An initial boundary value problem for a partial differential equation of higher even order with a Bessel operator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 273-292

Voir la notice de l'article provenant de la source Math-Net.Ru

In present paper, an initial-boundary value problem is formulated in a rectangle for a higher even order partial differential equation with the Bessel operator. Applying the method of separation of variables to the considered problem a spectral problem is obtained for an ordinary differential equation of higher even order. The self-adjointness of the last problem is proved, which implies the existence of the system of its eigenfunctions, as well as the orthonormality and completeness of this system. The uniform convergence of some bilinear series and the order of the Fourier coefficients, depending on the found eigenfunctions, is investigated. The solution of the considered problem is found as the sum of the Fourier series with respect to the system of eigenfunctions of the spectral problem. The absolute and uniform convergence of this series, as well as the series obtained by its differentiating, have been proved. The uniqueness of the solution of the problem is proved by the method of spectral analysis. An estimate is obtained for the solution of the problem which implies the continuous dependence of the solution on the given functions.
Keywords: even order partial differential equation, Bessel operator, initial-boundary value problem, spectral method, Green's function, integral equation, uniqueness and stability of the solution.
Mots-clés : existence
@article{VSGTU_2022_26_2_a3,
     author = {A. K. Urinov and M. S. Azizov},
     title = {An initial boundary value problem for a partial differential equation of higher even order with a  {Bessel} operator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {273--292},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/}
}
TY  - JOUR
AU  - A. K. Urinov
AU  - M. S. Azizov
TI  - An initial boundary value problem for a partial differential equation of higher even order with a  Bessel operator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 273
EP  - 292
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/
LA  - ru
ID  - VSGTU_2022_26_2_a3
ER  - 
%0 Journal Article
%A A. K. Urinov
%A M. S. Azizov
%T An initial boundary value problem for a partial differential equation of higher even order with a  Bessel operator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 273-292
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/
%G ru
%F VSGTU_2022_26_2_a3
A. K. Urinov; M. S. Azizov. An initial boundary value problem for a partial differential equation of higher even order with a  Bessel operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 273-292. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/