Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_2_a3, author = {A. K. Urinov and M. S. Azizov}, title = {An initial boundary value problem for a partial differential equation of higher even order with a {Bessel} operator}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {273--292}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/} }
TY - JOUR AU - A. K. Urinov AU - M. S. Azizov TI - An initial boundary value problem for a partial differential equation of higher even order with a Bessel operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 273 EP - 292 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/ LA - ru ID - VSGTU_2022_26_2_a3 ER -
%0 Journal Article %A A. K. Urinov %A M. S. Azizov %T An initial boundary value problem for a partial differential equation of higher even order with a Bessel operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 273-292 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/ %G ru %F VSGTU_2022_26_2_a3
A. K. Urinov; M. S. Azizov. An initial boundary value problem for a partial differential equation of higher even order with a Bessel operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 273-292. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a3/
[1] Tikhonov A. N., Samarskiy A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1972, 736 pp. (In Russian)
[2] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of Mathematical Biology], Vyssh. shk., Moscow, 1995, 301 pp. (In Russian)
[3] Salakhitdinov M. S., Amanov D., “Solvability and spectral properties of a selfadjoint problem for a fourth-order equation”, Uzbek. Mat. Zh., 2005, no. 3, 72–77 (In Russian)
[4] Amanov D., Yuldasheva A. V., “Solvability and spectral properties of a selfadjoint problem for a fourth-order equation”, Uzbek. Mat. Zh., 2007, no. 4, 3–8 (In Russian) | Zbl
[5] Amanov D., Murzambetova M. B., “Boundary value problems for a fourth order equation with a spectral parameter”, Uzbek. Mat. Zh., 2012, no. 3, 22–30 (In Russian)
[6] Amanov D., Murzambetova M. B., “A boundary value problem for a fourth order partial differential equation with the lowest term”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 1, 3–10 (In Russian)
[7] Otarova Zh. A., “The solvability and spectral properties of selfadjoint problems for a fourth-order equation”, Uzbek. Mat. Zh., 2008, no. 2, 74–80 (In Russian) | Zbl
[8] Otarova Zh. A., “Solvability and spectral properties of a selfadjoint problem for a fourth-order equation”, Dokl. AN RUz., 2008, no. 1, 10–14 (In Russian)
[9] Otarova Zh. A., “Volterra boundary value problem for a fourth order equation”, Dokl. AN RUz., 2008, no. 6, 18–22 (In Russian)
[10] Sabitov K. B., “Cauchy problem for the beam vibration equation”, Differ. Equ., 53:5 (2017), 658–664 | DOI | DOI
[11] Sabitov K. B., “Fluctuations of a beam with clamped ends”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 311–324 (In Russian) | DOI | Zbl
[12] Sabitov K. B., “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equ., 53:1 (2017), 86–98 | DOI | DOI
[13] Sabitov K. B., Fadeeva O. V., “Initial-boundary value problem for the equation of forced vibrations of a cantilever beam”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 51–66 (In Russian) | DOI | Zbl
[14] Azizov M. S., “A boundary problem for the fourth order equation with a singular coefficient in a rectangular region”, Lobachevskii J. Math., 41:6 (2020), 1043–1050 | DOI
[15] Azizov M. S., “A mixed problem for a fourth-order nonhomogeneous equation with singular coefficients in a rectangular”, Bul. Inst. Math., 2020, no. 4, 50–59 (In Russian)
[16] Amanov D., Yuldasheva A. V., “Solvability and spectral properties of boundary value problems for equations of even order”, Malays. J. Math. Sci., 3:2 (2009), 227–248 https://mjms.upm.edu.my/lihatmakalah.php?kod=2009/July/3/2/227-248
[17] Amanov D., “About correctness of boundary value problems for equation of even order”, Uzbek Math. J., 2011, no. 4, 20–35
[18] Yuldasheva A. V., “On one proble for higher-order equation”, Bulletin KRASEC. Phys. Math. Sci., 9:2 (2014), 18–22 | DOI | DOI
[19] Yuldasheva A. V., “On a problem for a quasi-linear equation of even order”, J. Math. Sci., 241:4 (2019), 423–429 | DOI | MR | Zbl
[20] Amanov D., Ashyralyev A., “Well-posedness of boundary value problems for partial diffferential equations of even order”, AIP Conference Proceedings, 1470:1 (2012), 3 | DOI
[21] Ashurov R. R., Muhiddinova O. T., “Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 30:1 (2020), 8–19 (In Russian) | DOI
[22] Ashurov R. R., Muhiddinova O. T., “Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator”, Lobachevskii J. Math., 42:2 (2021), 517–525 | DOI
[23] Karimov Sh. T., “Method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator”, Russian Math. (Iz. VUZ), 61:8 (2017), 22–35 | DOI
[24] Karimov Sh. T., “On some generalizations of properties of the Lowndes operator and their applications to partial differential equations of high order”, Filomat, 32:3 (2018), 873–883 | DOI
[25] Karimov Sh. T., “The Cauchy problem for the degenerated partial differential equation of the high even order”, Sib. Elektron. Mat. Izv., 2018, no. 15, 853–862 | DOI
[26] Karimov Sh. T., Urinov A. K., “Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator”, Vladikavkaz. Mat. Zh., 20:3 (2018), 57–68 (In Russian) | DOI
[27] Urinov A. K., Karimov Sh. T., “On the Cauchy problem for the iterated generalized two-axially symmetric equation of hyperbolic type”, Lobachevskii J. Math., 41:1 (2020), 102–110 | DOI
[28] Mikhlin S. G., Linear Integral Equations, Dover Publ., Mineola, NY, 2020, xv+223 pp. | Zbl
[29] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Fizmatlit, Moscow, 1969, 528 pp. (In Russian) | Zbl