Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 222-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using the heat kernel and the transport operator on each step of time discretization, approximate solutions for the transport-diffusion equation on the half-plane $ \mathbb{R}^2_+ $ are constructed, and their convergence to a function which satisfies the transport-diffusion equation and the initial and boundary conditions is proved. These approximate solutions can be considered as a deterministic version of (the approximation of) the stochastic representation of the solution to parabolic equation, realized by the relationship between the heat kernel and the Brownian motion. But as they are defined only by an integral operator and transport, their properties and their convergence are proved without using probabilistic notions. The result of this paper generalizes that of recent papers about the convergence of analogous approximate solutions on the whole space $ \mathbb{R}^n $. In case of the half-plane, it is necessary to elaborate (not trivial) estimates of the smoothness of the approximate solutions influenced by boundary condition.
Mots-clés : transport-diffusion equation
Keywords: approximate solution, heat kernel.
@article{VSGTU_2022_26_2_a1,
     author = {M. Aouaouda and A. Ayadi and H. Fujita Yashima},
     title = {Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {222--258},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/}
}
TY  - JOUR
AU  - M. Aouaouda
AU  - A. Ayadi
AU  - H. Fujita Yashima
TI  - Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 222
EP  - 258
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/
LA  - ru
ID  - VSGTU_2022_26_2_a1
ER  - 
%0 Journal Article
%A M. Aouaouda
%A A. Ayadi
%A H. Fujita Yashima
%T Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 222-258
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/
%G ru
%F VSGTU_2022_26_2_a1
M. Aouaouda; A. Ayadi; H. Fujita Yashima. Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 222-258. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/

[1] Landau L. D., Lifchitz E. M., Gidrodinamika / Teoreticheskaia fizika [Hydrodynamics / Theoretical Physics] Vol. 6, Nauka, Moscow, 1986, 736 pp. (In Russian)

[2] Aloyan A. E., Modelirovanie dinamiki i kinetiki gazovykh primesei i aerozolei v atmosfere [Modeling, Dynamics and Kinetics of Gas Admixtures in the Atmosphere], Nauka, Moscow, 2008, 415 pp. (In Russian)

[3] Nosov A. V., Krylov A. L., Kiselev V. P., Kazakov S. V., Modelirovanie migratsii radionuklidov v poverkhnostnykh vodakh [Modeling of Migration of Radioactive Substances in Surface Water], Nauka, Moscow, 2010, 253 pp. (In Russian)

[4] Moreira D. M., Moraes A. C., Goulart A. G., Toledo de Almeida Albuquerque T., “A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance”, Atmospheric Environment, 83 (2014), 254–259 | DOI

[5] Tsydenov B. O., “A numerical study of impurity propagation in a freshwater lake on the basis of water turbidity distribution”, Vych. Tekhn., 22:1 (Special Issue) (2017), 113–124 (In Russian)

[6] Esmail S., Agrawal P., Shaban Aly, “A novel analytical approach for advection diffusion equation for radionuclide release from area source”, Nuclear Eng. Techn., 6 (2020), 816–826 | DOI

[7] Essa Kh. S. M., El-Otaify M. S., “Mathematical model for atmospheric dispersion equation (a review)”, J. Rad. Nucl. Appl., 52:2 (2021), 119–128 | DOI

[8] Davydova M. A., Zakharova S. A., Elansky N. F., Postylyakov O. V., “Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution”, Dokl. Math., 103:1 (2021), 26–31 | DOI | DOI | Zbl

[9] Khoshgou H., Neyshabouri S. A. A. S., “Using the backward probability method in contaminant source identification with a finite-duration source loading in a river”, Environ. Sci. Pollut. Res., 29:4 (2021), 6306–6316 | DOI

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968, xi+648 pp. | Zbl

[11] Polyanin A. D., Vyazmin A. V., Zhurov A. I., Kazenin D. A., Spravochnik po tochnym resheniiam uravnenii teplo- i massoperenosa [Handbook of Exact Solutions of Heat- and Mass-Transfer Equations], Faktorial, Moscow, 1988, 368 pp. (In Russian)

[12] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010, xxii+749 pp. | DOI

[13] Gikhman I., Skorokhod A., Introduction à la théorie des processus aléatoires, Mir Publ., Moscow, 1980, 557 pp. (In French) | Zbl | Zbl

[14] Pardoux É., Peng S., “Backward doubly stochastic differential equations and systems of quasilinear SPDEs”, Prob. Theory Rel. Fields, 98:2 (1994), 209–227 | DOI

[15] Pardoux É., Veretennikov A. Yu., “Averaging of backward stochastic differential equations, with application to semi-linear PDE's”, Stochastics Stochastics Rep., 60:3–4 (1997), 255–270 | DOI

[16] Pardoux É., Răşcanu A., Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, 69, Springer, Heidelberg, 2014, xvii+667 pp. | DOI

[17] Freidlin M. I., Wentzell A. D., Random Perturbations of Dynamical Systems, Grundlehren der mathematischen Wissenchafften, 260, Springer, Berlin, Heidelberg, 2012, xxviii+458 pp. | DOI

[18] Milstein G. N., Tretyakov M. V., Stochastic Numerics for Mathematical Physics, Scientific Computation, Springer, Berlin, Heidelberg, 2004, xix+596 pp. | DOI

[19] Desmond J. H., Mao X., Stuart A. M., “Strong convergence of Euler-type methods for nonlinear stochastic differential equations”, SIAM J. Numer. Anal., 40:3 (2002), 1041–1063 | DOI

[20] Higham D. J., “Stochastic ordinary differential equations in applied and computational mathematics”, IMA J. Appl. Math., 76:3 (2011), 449–474 | DOI

[21] Mao X., “The truncated Euler–Maruyama method for stochastic differential equations”, J. Comput. Appl. Math., 290 (2015), 370-384 | DOI

[22] Taleb L., Selvaduray S., Fujita Yashima H., “Approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 8 (2020), 71–90 (In French)

[23] Smaali H., Fujita Yashima H., “Une généralisation de l'approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 9 (2021), 89–108 (In French)

[24] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, International Series of Monographs on Pure and Applied Mathematics, 39, Pergamon Press, New York, 1963, xvi+765 pp. | Zbl

[25] Vladimirov V. S, Generalized Functions in Mathematical Physics, Mir Publ., Moscow, 1979, 280 pp. | Zbl | Zbl

[26] Emanuel K., “A similarity hypothesis for air-sea exchange at extreme wind speeds”, J. Atmos. Sci., 60:11 (2003), 1420–1428 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[27] Du Y., Xie S., Huang G., Hu K., “Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming”, J. Climate, 22:8 (2009), 2023–2038 | DOI

[28] Vlasova G. A., Nguen Ba Suan, Demenok M. N., “The water circulation of the South China Sea in a zone of the Vietnamese Current under the influence of southern tropical cyclone in spring of 1999: Results of numerical modeling”, Fundam. Prikl. Gidrofiz., 9:4 (2016), 25–34 (In Russian)

[29] Shi Y., Zhang Q., Wang S., Yang K., Yang Y., Ma Y., “Impact of typhoon on evaporation dust in the Northwest Pacific Ocean”, IEEE Access, 7 (2019), 109111–109119 | DOI

[30] Aouaouda M., Ayadi A., Fujita Yashima H., “Mathematical modeling of tropical cyclones on the basis of wind trajectories”, Comput. Math. Math. Phys., 59:9 (2019), 1493–1507 | DOI | DOI

[31] Cotton W., Bryan G., van den Heever S., Storm and Cloud Dynamics. The Dynamics of Clouds and Precipitating Mesoscale Systems, International Geophysics Series, 99, Academic Press, Amsterdam, 2011, xvi+809 pp. | DOI