Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_2_a1, author = {M. Aouaouda and A. Ayadi and H. Fujita Yashima}, title = {Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {222--258}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/} }
TY - JOUR AU - M. Aouaouda AU - A. Ayadi AU - H. Fujita Yashima TI - Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 222 EP - 258 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/ LA - ru ID - VSGTU_2022_26_2_a1 ER -
%0 Journal Article %A M. Aouaouda %A A. Ayadi %A H. Fujita Yashima %T Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 222-258 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/ %G ru %F VSGTU_2022_26_2_a1
M. Aouaouda; A. Ayadi; H. Fujita Yashima. Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 222-258. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a1/