Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a9, author = {G. B. Sizykh}, title = {Poiseuille-type flow in a~channel with permeable walls}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {190--201}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/} }
TY - JOUR AU - G. B. Sizykh TI - Poiseuille-type flow in a~channel with permeable walls JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 190 EP - 201 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/ LA - ru ID - VSGTU_2022_26_1_a9 ER -
%0 Journal Article %A G. B. Sizykh %T Poiseuille-type flow in a~channel with permeable walls %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 190-201 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/ %G ru %F VSGTU_2022_26_1_a9
G. B. Sizykh. Poiseuille-type flow in a~channel with permeable walls. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 190-201. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/
[1] Pukhnachev V. V., “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 2006, no. 6, 3–76 (In Russian)
[2] Meleshko S. V., “A particular class of partially invariant solutions of the Navier–Stokes equations”, Nonlinear Dynamics, 36:1 (2004), 47–68 | DOI | Zbl
[3] Burmasheva N. V., Prosviryakov E. Yu., “Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26:2 (2020), 79–87 (In Russian) | DOI
[4] Prosviryakov E. Yu., “Layered gradient stationary flow vertically swirling viscous incompressible fluid”, CEUR Workshop Proceedings, 1825 (2016), 164–172
[5] Knyazev D. V., Kolpakov I. Yu., “The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius”, Rus. J. Nonlin. Dyn., 11:1 (2015), 89–97 (In Russian) | Zbl
[6] Burmasheva N. V., Prosviryakov E. Yu., “A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters”, The Bulletin of Irkutsk State University. Series Mathematics, 32, 33–48 (In Russian) | DOI | Zbl
[7] Gurchenkov A. A., “Unsteady boundary layers on the porous plates in a rotating slot with injection and suction”, Comput. Math. Math. Phys., 41:3 (2001), 413–419 | MR | Zbl
[8] Bashkin V. A., Egorov I. V., Seminary po teoreticheskoi gidrodinamike. 1 [Seminars on Theoretical Hydrodynamics. Part 1], MIPT, Moscow, 2003, 194 pp. (In Russian)
[9] Drazin P. G., Riley N., The Navier–Stokes Equations. A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge Univ. Press, Cambridge, 2006, x+196 pp. | DOI | Zbl
[10] Shtern V., Counterflows. Paradoxical Fluid Mechanics Phenomena, Cambridge Univ. Press, Cambridge, 2012, xiv+470 pp. | DOI | Zbl
[11] Shtern V., Cellular Flows. Topological Metamorphoses in Fluid Mechanics, Cambridge Univ. Press, Cambridge, 2018, xiv+574 pp. | DOI | Zbl
[12] Bogoyavlenskij O. I., “Exact solutions to the Navier–Stokes equations”, C. R. Math. Acad. Sci., Soc. R. Can., 24:4 (2002), 138–143 | Zbl
[13] Bogoyavlenskij O. I., “Infinite families of exact periodic solutions to the Navier–Stokes equations”, Mosc. Math. J., 3:2 (2003), 263–272 | DOI | Zbl
[14] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2006), 642–662 | DOI
[15] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | DOI | Zbl
[16] Aristov S. N., Prosviryakov E. Yu., “Stokes waves in vortical fluid”, Nelin. Dinam., 10:3 (2014), 309–318 (In Russian) | Zbl
[17] Golubkin V. N., Sizykh G. B., “Viscous gas flow between vertical walls”, Fluid Dyn., 53:2 (2018), 11–18 | DOI | DOI | Zbl
[18] Sizykh G. B., “A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 790–798 (In Russian) | DOI | Zbl
[19] Khorin A. N., Konyukhova A. A., “Couette flow of hot viscous gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 365–378 (In Russian) | DOI | Zbl
[20] Baranovskii E. S., Domnich A. A., “Model of a nonuniformly heated viscous flow through a bounded domain”, Differ. Equ., 56:3 (2020), 304–314 | DOI | DOI | Zbl
[21] Markov V. V., Sizykh G. B., “Existence criterion for the equations solution of ideal gas motion at given helical velocity”, Izv. VUZ. Applied Nonlinear Dynamics, 28:6 (2020), 643–652 (In Russian) | DOI
[22] Sizykh G. B., “Axisymmetric helical flows of viscous fluid”, Russian Math. (Iz. VUZ), 63:2 (2019), 44–50 | DOI | DOI | Zbl