Poiseuille-type flow in a~channel with permeable walls
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 190-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the Navier–Stokes equations, the flow of a viscous incompressible fluid between immovable parallel permeable walls is considered, on which only the longitudinal velocity component is equal to zero. Solutions are sought in which the velocity component transverse to the plane of the plates is constant. Both stationary and non-stationary solutions are obtained, among which there is a non-trivial solution with a constant pressure and a longitudinal velocity exponentially decaying with time. These solutions show the influence on the profile of the horizontal velocity component of the removal of the boundary layer into the depth of the flow from one plate with simultaneous suction of the boundary layer on the other plate. It is established that for stationary flows the removal of the boundary layer into the depth of the flow from one plate and, with simultaneous suction of the boundary layer on the other plate, leads to an increase in the drag compared to the classical Poiseuille flow. In the case of impermeable walls, an exact non-stationary solution is obtained, the velocity profile of which at fixed times differs from the profile in the classical Poiseuille flow and, in the limit (as time tends to infinity), corresponds to rest.
Mots-clés : exact solutions, Poiseuille flow
Keywords: Navier–Stokes equations, permeable walls.
@article{VSGTU_2022_26_1_a9,
     author = {G. B. Sizykh},
     title = {Poiseuille-type flow in a~channel with permeable walls},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {190--201},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/}
}
TY  - JOUR
AU  - G. B. Sizykh
TI  - Poiseuille-type flow in a~channel with permeable walls
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 190
EP  - 201
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/
LA  - ru
ID  - VSGTU_2022_26_1_a9
ER  - 
%0 Journal Article
%A G. B. Sizykh
%T Poiseuille-type flow in a~channel with permeable walls
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 190-201
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/
%G ru
%F VSGTU_2022_26_1_a9
G. B. Sizykh. Poiseuille-type flow in a~channel with permeable walls. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 190-201. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a9/

[1] Pukhnachev V. V., “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 2006, no. 6, 3–76 (In Russian)

[2] Meleshko S. V., “A particular class of partially invariant solutions of the Navier–Stokes equations”, Nonlinear Dynamics, 36:1 (2004), 47–68 | DOI | Zbl

[3] Burmasheva N. V., Prosviryakov E. Yu., “Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26:2 (2020), 79–87 (In Russian) | DOI

[4] Prosviryakov E. Yu., “Layered gradient stationary flow vertically swirling viscous incompressible fluid”, CEUR Workshop Proceedings, 1825 (2016), 164–172

[5] Knyazev D. V., Kolpakov I. Yu., “The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius”, Rus. J. Nonlin. Dyn., 11:1 (2015), 89–97 (In Russian) | Zbl

[6] Burmasheva N. V., Prosviryakov E. Yu., “A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters”, The Bulletin of Irkutsk State University. Series Mathematics, 32, 33–48 (In Russian) | DOI | Zbl

[7] Gurchenkov A. A., “Unsteady boundary layers on the porous plates in a rotating slot with injection and suction”, Comput. Math. Math. Phys., 41:3 (2001), 413–419 | MR | Zbl

[8] Bashkin V. A., Egorov I. V., Seminary po teoreticheskoi gidrodinamike. 1 [Seminars on Theoretical Hydrodynamics. Part 1], MIPT, Moscow, 2003, 194 pp. (In Russian)

[9] Drazin P. G., Riley N., The Navier–Stokes Equations. A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge Univ. Press, Cambridge, 2006, x+196 pp. | DOI | Zbl

[10] Shtern V., Counterflows. Paradoxical Fluid Mechanics Phenomena, Cambridge Univ. Press, Cambridge, 2012, xiv+470 pp. | DOI | Zbl

[11] Shtern V., Cellular Flows. Topological Metamorphoses in Fluid Mechanics, Cambridge Univ. Press, Cambridge, 2018, xiv+574 pp. | DOI | Zbl

[12] Bogoyavlenskij O. I., “Exact solutions to the Navier–Stokes equations”, C. R. Math. Acad. Sci., Soc. R. Can., 24:4 (2002), 138–143 | Zbl

[13] Bogoyavlenskij O. I., “Infinite families of exact periodic solutions to the Navier–Stokes equations”, Mosc. Math. J., 3:2 (2003), 263–272 | DOI | Zbl

[14] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2006), 642–662 | DOI

[15] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | DOI | Zbl

[16] Aristov S. N., Prosviryakov E. Yu., “Stokes waves in vortical fluid”, Nelin. Dinam., 10:3 (2014), 309–318 (In Russian) | Zbl

[17] Golubkin V. N., Sizykh G. B., “Viscous gas flow between vertical walls”, Fluid Dyn., 53:2 (2018), 11–18 | DOI | DOI | Zbl

[18] Sizykh G. B., “A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 790–798 (In Russian) | DOI | Zbl

[19] Khorin A. N., Konyukhova A. A., “Couette flow of hot viscous gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 365–378 (In Russian) | DOI | Zbl

[20] Baranovskii E. S., Domnich A. A., “Model of a nonuniformly heated viscous flow through a bounded domain”, Differ. Equ., 56:3 (2020), 304–314 | DOI | DOI | Zbl

[21] Markov V. V., Sizykh G. B., “Existence criterion for the equations solution of ideal gas motion at given helical velocity”, Izv. VUZ. Applied Nonlinear Dynamics, 28:6 (2020), 643–652 (In Russian) | DOI

[22] Sizykh G. B., “Axisymmetric helical flows of viscous fluid”, Russian Math. (Iz. VUZ), 63:2 (2019), 44–50 | DOI | DOI | Zbl