Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a8, author = {I. A. Maksimenko and V. V. Markov}, title = {On a new {Lagrangian} view on the evolution of vorticity in~spatial flows}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {179--189}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a8/} }
TY - JOUR AU - I. A. Maksimenko AU - V. V. Markov TI - On a new Lagrangian view on the evolution of vorticity in~spatial flows JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 179 EP - 189 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a8/ LA - ru ID - VSGTU_2022_26_1_a8 ER -
%0 Journal Article %A I. A. Maksimenko %A V. V. Markov %T On a new Lagrangian view on the evolution of vorticity in~spatial flows %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 179-189 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a8/ %G ru %F VSGTU_2022_26_1_a8
I. A. Maksimenko; V. V. Markov. On a new Lagrangian view on the evolution of vorticity in~spatial flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 179-189. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a8/
[1] Rosenhead L., “The formation of vortices from a surface of discontinuity”, P. Roy. Soc. Lond., 1931, 170–192 | DOI
[2] Belotserkovskii S. M., Nisht M. I., Otryvnoe i bezotryvnoe obtekanie tonkikh kryl'ev ideal'noi zhidkost'iu [Separated and Unseparated Ideal Liquid Flow around thin Wings], Nauka, Moscow, 1978, 352 pp. (In Russian)
[3] Cottet G.-H., Koumoutsakos P., Vortex Methods. Theory and Practice, Cambridge Univ. Press, 2000, xiv+313 pp. | DOI
[4] Aparinov A. A., Setukha A. V., Zhelannikov A. I., “Numerical simulation of separated flow over three-dimensional complex shape bodies with some vortex method”, AIP Conference Proceedings, 1629:1 (2014), 69 | DOI
[5] Aparinov A. A., Kritskii B. S., Setukha A. V., “Numerical modeling of helicopter main rotor behavior near a small-scale helideck by the vortex method”, Russ. Aeronaut., 60:4 (2017), 500–507 | DOI
[6] Aparinov A. A., Aparinov V. A., Setukha A. V, “Supercomputer modeling of parachute flight dynamics”, Supercomputing Frontiers and Innovations, 5:3 (2018), 121–125 | DOI
[7] Golubkin V. N., Sizykh G. B., “Some general properties of plane-parallel viscous flows”, Fluid Dyn., 22:3 (1987), 479–481
[8] Brutyan M. A., Golubkin V. N., Krapivskii P. L., “On the Bernoulli equation for axisymmetric viscous fluid flows”, Uch. zap. TsAGI [TsAGI Science Journal], 19:2 (1988), 98–100 (In Russian)
[9] Dynnikova G. Ya., “The Lagrangian approach to the solution of non-stationary Navier–Stokes equations”, Dokl. Math., 49:11 (2004), 648–652 | MR
[10] Andronov P. R., Guvernyuk S. V., Dynnikova G. Ya., Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex Methods for Calculating Non-Stationary Hydrodynamic Loads], Moscow Univ., Moscow, 2006, 184 pp. (In Russian)
[11] Markov V. V., Sizykh G. B., “Vorticity evolution in liquids and gases”, Fluid Dyn., 50:2 (2015), 186–192 | DOI | Zbl
[12] Dynnikova G. Ya., “Calculation of flow around a circular cylinder on the basis of two-dimensional Navier–Stokes equations at large Reynolds numbers with high resolution in a boundary layer”, Dokl. Phys., 53:10 (2008), 544–547 | DOI | Zbl
[13] Dynnikova G. Ya., Dynnikov Ya. A., Guvernyuk S. V., Malakhova T. V., “Stability of a reverse Karman vortex street”, Physics of Fluids, 33:2 (2021), 024102 | DOI
[14] Kuzmina K., Marchevsky I., Soldatova I., Izmailova Y., “On the scope of Lagrangian vortex methods for two-dimensional flow simulations and the POD technique application for data storing and analyzing”, Entropy, 23:1 (2021), 118 | DOI
[15] Leonova D., Marchevsky I., Ryatina E., “Fast methods for vortex influence computation in meshless lagrangian vortex methods for 2D incompressible flows simulation”, WIT Transactions on Engineering Sciences, 126 (2019), 255–267 | DOI
[16] Sizykh G. B., “New Lagrangian view of vorticity evolution in two-dimensional flows of liquid and gas”, Izv. VUZ. Applied Nonlinear Dynamics, 30:1 (2022), 30–36 (In Russian) | DOI
[17] Sizykh G. B., “Evolution of vorticity in swirling axisymmetric flows of a viscous incompressible fluid”, TsAGI Science Journal, 46:3 (2015), 209–217 | DOI
[18] Prosviryakov E. Yu., “Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:3 (2021), 505–516 (In Russian) | DOI | Zbl
[19] Grant J. R., Marshall J. S., “Diffusion velocity for a three-dimensional vorticity field”, Theor. Comput. Fluid Dyn., 19:6 (2005), 377–390 | DOI | Zbl
[20] Kotsur O. S., “Mathematical modelling of the elliptical vortex ring in a viscous fluid with the vortex filament method”, Mathematics and Mathematical Modeling, 2021, no. 3, 46–61 | DOI
[21] Sizykh G. B., “Entropy value on the surface of a non-symmetric convex bow part of a body in the supersonic flow”, Fluid Dyn., 54:7 (2019), 907–911 | DOI | DOI | Zbl
[22] Sizykh G. B., “Closed vortex lines in fluid and gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 407–416 | DOI | Zbl
[23] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 780–789 (In Russian) | DOI | Zbl
[24] Kotsur O. S., “On the existence of local formulae of the transfer velocity of local tubes that conserve their strengths”, Proceedings of MIPT, 11:1 (2019), 76–85 (In Russian)
[25] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Proceedings of MIPT, 12:4 (2020), 171–176 (In Russian) | DOI
[26] Sizykh G. B., “On the collinearity of vortex and the velocity behind a detached bow shock”, Proceedings of MIPT, 13:3 (2021), 144–147 (In Russian) | DOI
[27] Sizykh G. B., “Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 588–595 (In Russian) | DOI
[28] Sizykh G. B., “Integral invariant of ideal gas flows behind a detached bow shock”, Fluid Dyn., 56:8 (2021), 1027–1030 | DOI | DOI
[29] Prim R., Truesdell C., “A derivation of Zorawski's criterion for permanent vector-lines”, Proc. Am. Math. Soc., 1 (1950), 32–34 | Zbl
[30] Truesdell C., The Kinematics of Vorticity, Indiana Univ. Press, Bloomington, 1954, xx+232 pp. | Zbl
[31] Friedmann A. A., Opyt gidromekhaniki szhimaemoi zhidkosti [Experience in the Hydromechanics of Compressible Fluid], ONTI, Moscow, 1934, 368 pp. (In Russian)