Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a7, author = {V. N. Maklakov}, title = {The use of pseudoresiduals in the study of convergence of~unstable difference boundary value problems for~linear~nonhomogeneous ordinary second-order differential equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {140--178}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a7/} }
TY - JOUR AU - V. N. Maklakov TI - The use of pseudoresiduals in the study of convergence of~unstable difference boundary value problems for~linear~nonhomogeneous ordinary second-order differential equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 140 EP - 178 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a7/ LA - ru ID - VSGTU_2022_26_1_a7 ER -
%0 Journal Article %A V. N. Maklakov %T The use of pseudoresiduals in the study of convergence of~unstable difference boundary value problems for~linear~nonhomogeneous ordinary second-order differential equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 140-178 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a7/ %G ru %F VSGTU_2022_26_1_a7
V. N. Maklakov. The use of pseudoresiduals in the study of convergence of~unstable difference boundary value problems for~linear~nonhomogeneous ordinary second-order differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 140-178. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a7/
[1] Samarskii A. A., Teoriia raznostnykh skhem [The Theory of Difference Schemes], Nauka, Moscow, 1977, 656 pp. (In Russian) | MR
[2] Formaleev V. F., Reviznikov D. L., Chislennye metody [Numerical Methods], Fizmatlit, Moscow, 2004, 400 pp. (In Russian)
[3] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical Methods], Nauka, Moscow, 1973 (In Russian) | MR
[4] Maklakov V. N., “The evaluation of the order of approximation of the matrix method for numerical integration of the boundary value problems for systems of linear non-homogeneous ordinary differential equations of the second order with variable coefficients. Message 2. Boundary value problems with boundary conditions of the second and third kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 55–79 (In Russian) | DOI
[5] Maklakov V. N., “Convergence of the matrix method of numerical integration of the boundary value problems for linear nonhomogeneous ordinary differential second order equations with variable coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015), 559–577 (In Russian) | DOI | Zbl
[6] Radchenko V. P., Usov A. A., “Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 60–65 (In Russian) | DOI
[7] Maklakov V. N., “The evaluation of the order of approximation of the matrix method for numerical integration of the boundary value problems for systems of linear non-homogeneous ordinary differential equations of the second order with variable coefficients. Message 1. Boundary value problems with boundary conditions of the first kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 389–409 (In Russian) | DOI | Zbl
[8] Fichtenholz G. M., Differential- und Integralrechnung. I [Differential and integral calculus. I], Hochschulbücher für Mathematik [University Books for Mathematics], 61, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986, xiv+572 pp. (In German) | MR | Zbl
[9] Kamke E., Spravochnik po obyknovennym differentsial'nym uravneniiam [Manual of ordinary differential equations], Nauka, Moscow, 1976, 576 pp. (In Russian) | MR
[10] Filippov A. F., Sbornik zadach po differentsial'nym uravneniiam [Collection of Problems on Differential Equations], Librokom, Moscow, 2013, 208 pp. (In Russian)
[11] Zaks L., Statisticheskoe otsenivanie [Statistical estimation], Statistika, Moscow, 1976, 598 pp. (In Russian) | MR
[12] Kurosh A. G., Kurs vysshei algebry [A Course of Higher Algebra], Nauka, Moscow, 1975, 431 pp. (In Russian) | MR