Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 119-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technique for calculating the relaxation of residual stresses in a cantilevered rotating cylinder after the procedure of surface plastic deformation under creep conditions has been developed, taking into account the effect of a stepwise change in the parameters of temperature-force loading (unloading). The problem simulates the stress-strain state of a surface-hardened cylinder (rod), the end section of which is rigidly fixed on a disk rotating at a constant angular velocity. The technique includes a method for reconstructing the fields of residual stresses and plastic deformations and a method for calculating the relaxation of residual stresses during creep of a rotating cylindrical rod. Since the tensile stresses caused by rotation along the length of the rod do not change in time, the problem of relaxation of residual stresses for a stretched rod at constant stress is solved in each cross section. A detailed numerical study of the effect of the number of revolutions on the rate of relaxation of residual stresses was performed for a shot-hardened cylindrical sample with a radius of 3.76 mm made of EI698 alloy at a temperature of 700 $^\circ$C. Analysis of the calculation results allowed to establish a non-trivial effect, which consists in the fact that the relaxation of residual stresses in sections subjected to axial tensile stresses due to rotation occurs less intensively than in the “tail” section, where the axial load from rotation is zero. The results obtained in this work can be useful in evaluating the effectiveness of surface-plastic hardening of parts under high-temperature creep conditions.
Keywords: residual stresses, surface plastic hardening, rotating cylinder, creep, relaxation.
@article{VSGTU_2022_26_1_a6,
     author = {V. P. Radchenko and A. E. Liberman and O. L. Blokhin},
     title = {Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a6/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - A. E. Liberman
AU  - O. L. Blokhin
TI  - Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 119
EP  - 139
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a6/
LA  - ru
ID  - VSGTU_2022_26_1_a6
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A A. E. Liberman
%A O. L. Blokhin
%T Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 119-139
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a6/
%G ru
%F VSGTU_2022_26_1_a6
V. P. Radchenko; A. E. Liberman; O. L. Blokhin. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 119-139. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a6/

[1] Birger I. A., Ostatochnye napriazheniia [Residual Stresses], Mashgiz, Moscow, 1963, 232 pp. (In Russian)

[2] Grinchenko I. G., Uprochnenie detalei iz zharoprochnykh i titanovykh splavov [Hardening Parts Made of High-Resistant and Titanium Alloys], Mashinostroenie, Moscow, 1971, 120 pp. (In Russian)

[3] Sulima G. N., Shuvalov V. A., Yagodkin Yu. D., Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin [Surface Layer and Performance of Machine Parts], Mashinostroenie, Moscow, 1988, 240 pp. (In Russian)

[4] Nozhnitskii Yu. A., Fishgoit A. V., Tkachenko R. I., Teplova S. V., “Development and application of new GTE parts hardening methods based on the plastic deformation of the surface layers”, Vestn. Dvigatel., 2006, no. 2, 8–16 (In Russian)

[5] Dai K., Shaw L., “Analysis of fatigue resistance improvements via surface severe plastic deformation”, Intern. J. Fatigue, 30:8 (2008), 1398–1408 | DOI

[6] James M. N., Hughes D. J., Chen Z., et al., “Residual stresses and fatigue performance”, Eng. Failure Anal., 14:2 (2007), 384–395 | DOI

[7] Majzoobi G. H., Azadikhah K., Nemati J., “The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6”, Mater. Sci. Eng. A, 516:1–2 (2009), 235–247 | DOI

[8] Soady K. A., “Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening. 1. Effeact of shot peening on fatigue resistance”, Mater. Sci. Technol., 29:6 (2013), 673–651 | DOI

[9] Terres M. A., Laalai N., Sidhom H., “Effect of nitriding and shot-peening on the fatigue behavior of 42CrMo4 steel: Experimental analysis and predictive approach”, Mater. Design., 35 (2012), 741–748 | DOI

[10] Pavlov V. F., Kirpichev V. A., Vakuluk V. S., Prognozirovanie soprotivleniia ustalosti poverkhnostno uprochnennykh detalei po ostatochnym napriazheniiam [Prediction of Fatigue Resistance of Surface Reinforced Parts by Residual Stresses], Samara Sci. Center of RAS, Samara, 2012, 125 pp. (In Russian)

[11] Radchenko V. P., Pavlov V. Ph., Saushkin M. N., “Investigation of surface plastic hardening anisotropy influence on residual stresses distribution in hollow and solid cylindrical specimens”, PNRPU Mechanics Bulletin, 2015, no. 1, 130–147 (In Russian) | DOI

[12] Radchenko V. P., Saushkin M. N., Bochkova T. I., “Mathematical modeling and experimental study of forming and relaxation of residual stresses in plane samples made of EP742 alloy after ultrasonic hardening under high-temperature creep conditions”, PNRPU Mechanics Bulletin, 2018, no. 3–4, 88–98 | DOI

[13] Chen H., Wang S., Lu S., et al., “Simulation and experimental validation of residual stress and surface roughness of high manganese steel after shot peening”, Procedia CIRP, 71 (2018), 227–231 | DOI

[14] Isa M. R., Sulaiman S. N., Zaroog O. S., “Experimental and simulation method of introducing compressive residual stress in ASTM A516 grade 70 steel”, Key Eng. Mater., 803 (2019), 27–31 | DOI

[15] Kiselev I. A., Zhukov N. A., Vasilyev B. E., Selivanov A. N., “Modeling of residual stresses when calculating strength of lock joint elements. Part 1. Modeling of the shot peening process”, Proceedings of Higher Educational Institutions. Machine Building, 2018, no. 11, 49–59 (In Russian) | DOI

[16] Meguid S. A., Maicic L. A., “Finite element odeling of shot peening residual stress relaxation in turbine disk assemblies”, J. Eng. Mater. Technol., 137:3 (2015), 031003 | DOI

[17] Gallitelli D., Boyer V., Gelineau M., et al., “Simulation of shot peening: From process parameters to residual tress fields in a structure”, Comptes Rendus Mécanique, 344:4–5 (2016), 355–374 | DOI

[18] Zimmerman M., Klemenz M., Schulze V., “Literature review on shot peening simulation”, Int. J. Comput. Mater. Sci. Surf. Eng., 3:4 (2010), 289–310 | DOI

[19] Purohil R., Verma C. S., Rana R. S., et al., “Simulation of shot peening process”, Materials Today: Proceedings, 4:2 A (2017), 1244–1251 | DOI

[20] Jebahi M., Gakwaya A., Lévesque J., et al., “Robust methodology to simulate real shot peening process using discrete-continuum coupling method”, Int. J. Mech. Sci., 107 (2016), 21–33 | DOI

[21] Radchenko V. P., Saushkin M. N., “Direct method of solving the boundary-value problem of relaxation of residual stresses in a hardened cylindrical specimen under creep conditions”, J. Appl. Mech. Tech. Phys., 50:6 (2009), 989–997 | DOI | Zbl

[22] Radchenko V. P., Kocherov E. P., Saushkin M. N., Smyslov V. A., “Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions”, J. Appl. Mech. Tech. Phys., 56:2 (2015), 313–320 | DOI | DOI

[23] Radchenko V. P., Tsvetkov V. V., Derevyanka E. E., “Relaxation of residual stresses in a surface-hardened cylinder under creep conditions and rigid restrictions on linear and angular deformations”, Mech. Solids., 55:6 (2020), 898–906 | DOI | DOI

[24] Radchenko V. P., Tsvetkov V. V., Saushkin M. N., “Residual stress relaxation in a hardened cylinder under creep, loaded by an axial force, torque and internal pressure”, J. Appl. Mech. Tech. Phys., 61:4 (2020), 583–592 | DOI | DOI | Zbl

[25] Radchenko V. P., Saushkin M. N., Tsvetkov V. V., “Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions”, J. Appl. Mech. Tech. Phys., 57:3 (2016), 559–568 | DOI | DOI | Zbl

[26] Saushkin M. N., Prosvirkina E. A., “Relaxation of residual stresses in a surface-hardened layer of a solid rotating cylinder under creep conditions”, Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2006, 192–199 (In Russian)

[27] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)

[28] Birger I. A., Shorr B. F., Iosilevich G. B., Raschet na prochnost' detalei mashin [Calculation of the Strength of Machine Parts], Mashinostroenie, Moscow, 1979, 702 pp. (In Russian)

[29] Samarin Yu. P., Uravneniia sostoianiia materialov so slozhnymi reologicheskimi svoistvami [Equation of State of Materials with Complex Rheological Properties], Kuibyshev State Univ., Kuibyshev, 1979, 84 pp. (In Russian)

[30] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinstroenie-1, Moscow, 2004, 265 pp. (In Russian)

[31] Radchenko V. P., Berbasova T. I., Shishkin D. M., “Relaxation of residual stresses in a surface-hardened prismatic sample subjected to biaxial loading under creep conditions”, J. Appl. Mech. Tech. Phys., 62:5 (2021), 861–869 | DOI | DOI