An application of Mueller's method for determining eigenfrequencies of vibrations of viscoelastic bodies with~frequency-dependent characteristics of a~material
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 93-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

A search for optimal damping properties of structures using methods of numerical modelling is as a rule associated with a large number of computations. Alongside this an application of mechanical problem of natural vibrations of structures for this purpose allows estimating damping properties of structures regardless external force and kinematic impacts. This fact leads to sufficient decrease in computational costs. The results of the solution to the problem of natural vibrations of piecewise-homogeneous viscoelastic bodies are complex natural vibration frequencies, the real part of which is a frequency of vibrations and imaginary part is damping index (rate of vibration damping). A mechanical behavior of a viscoelastic material is described by the linear theory of Boltzman–Volterra. Within the frameworks of this theory mechanical properties of a viscoelastic material can be represented as complex dynamic moduli (shear modulus and bulk modulus). As a rule, these properties depend on frequency of external excitation. In current paper an algorithm which allows obtaining solution to the problem on natural vibrations, in case when components of complex dynamic moduli are frequency-dependent, is represented. The algorithm is based on using capabilities of the ANSYS software package and also the Mueller's method which allows solving partial problem of complex eigenvalues. An efficiency and productivity of the algorithm is demonstrated on the example of a two-layered cantilever plate. One layer of the plate is made of an elastic material and the second one is made of a viscoelastic material. Reliability of the obtained results is proved by comparison natural vibration frequencies obtained as a result of solution to the problem of natural vibrations and resonant frequencies at frequency response plots of the displacements obtained as a result of solution to the problem of forced steady-state vibrations using the ANSYS software package.
Keywords: viscoelasticity, complex dynamic moduli, natural vibrations, complex eigenfrequencies, forced steady-state vibrations, resonance frequencies.
@article{VSGTU_2022_26_1_a5,
     author = {D. A. Oshmarin and N. V. Sevodina and N. A. Iurlova},
     title = {An application of {Mueller's} method for determining eigenfrequencies of vibrations of viscoelastic bodies with~frequency-dependent characteristics of a~material},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {93--118},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a5/}
}
TY  - JOUR
AU  - D. A. Oshmarin
AU  - N. V. Sevodina
AU  - N. A. Iurlova
TI  - An application of Mueller's method for determining eigenfrequencies of vibrations of viscoelastic bodies with~frequency-dependent characteristics of a~material
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 93
EP  - 118
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a5/
LA  - ru
ID  - VSGTU_2022_26_1_a5
ER  - 
%0 Journal Article
%A D. A. Oshmarin
%A N. V. Sevodina
%A N. A. Iurlova
%T An application of Mueller's method for determining eigenfrequencies of vibrations of viscoelastic bodies with~frequency-dependent characteristics of a~material
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 93-118
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a5/
%G ru
%F VSGTU_2022_26_1_a5
D. A. Oshmarin; N. V. Sevodina; N. A. Iurlova. An application of Mueller's method for determining eigenfrequencies of vibrations of viscoelastic bodies with~frequency-dependent characteristics of a~material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 93-118. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a5/

[1] Nashif A. D., Jones D. I. G., Henderson J. P., Vibration Damping, John Wiley Sons, New York, 1985, 480 pp.

[2] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termoviazkouprugosti [Fundamentals of the Mathematical Theory of Thermal Viscoelasticity], Nauka, Moscow, 1970, 280 pp. (In Russian)

[3] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, North-Holland Publ., Amsterdam, 1969, ix+822 pp. | Zbl

[4] Rabotnov Yu. N., Elements of Hereditary Solid Mechanics, Nauka, Mir Publ., 1980, 387 pp.

[5] Harutyunyan N. Kh., Kolmanovsky V. V., Teoriia polzuchesti neodnorodnykh tel [Theory of Creep of Inhomogeneous Bodies], Nauka, Moscow, 1983, 336 pp. (In Russian)

[6] Harutyunyan N. Kh., Drozdov A. D., Naumov V. E., Mekhanika rastushchikh viazkouprugoplasticheskikh tel [Mechanics of Growing Viscoelastic Plastic Bodies], Nauka, Moscow, 1987, 472 pp. (In Russian)

[7] Bugakov I. I., Polzuchest' polimernykh materialov (teoriia i prilozheniia) [Creep of Polymeric Materials (Theory and Applications)], Nauka, Moscow, 1973, 288 pp. (In Russian)

[8] Karnaukhov V. G., Sviazannye zadachi termoviazkouprugosti [Coupled Problem of Thermoviscoelasticity], Nauk. Dumka, Kiev, 1982, 260 pp. (In Russian)

[9] Koltunov M. A., Polzuchest' i relaksatsiia [Creep and Relaxation], Vyssh. Shk., Moscow, 1976, 277 pp. (In Russian)

[10] Moskvitin V. V., Nauka, Moscow, 1982, 328 pp. (In Russian)

[11] Rzhanitsyn A. R., Nekotorye voprosy mekhaniki sistem, deformiruiushchikhsia vo vremeni [Some Problems in the Mechanics of Time-Deformable Systems], Gostehizdat, Moscow, Leningrad, 1949, 252 pp. (In Russian)

[12] Rzhanitsyn A. R., Teoriia polzuchesti [Creep Theory], Stroiizdat, Moscow, 1968, 419 pp. (In Russian)

[13] Bland D. R., The Theory of Linear Viscoelasticity, Dover Publications, Mineola, New York, 2016, 125 pp. | Zbl

[14] Christensen R. M., Theory of Viscoelasticity, An Introduction, Academic Press, New York, 1982, xii+364 pp.

[15] Ferry J. D., Viscoelastic Properties of Polymers, John Wiley Sons, New York, 1980, xxiv+641 pp.

[16] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results”, Appl. Mech. Rev., 63:1 (2010), 010801 | DOI

[17] Shitikova M. V., “Fractional operator vModels in dynamic problems of mechanics of solids: A review”, Mech. Solids, 57:1 (2022), 1–33 | DOI | DOI

[18] Troyanovskii I. E., “Construction of periodic solutions of integrodifferential equations of viscoelasticity”, Polymer Mechanics, 10:3 (1974), 447–448 | DOI

[19] Adamov A. A., Matveenko V. P., Trufanov N. A., Shardakov I. N., Metody prikladnoi viazkouprugosti [Methods of Applied Viscoelasticity], UB RAS, Ekaterinburg, 2003, 398 pp. (In Russian)

[20] Matveyenko V. P., Kligman E. P., “Natural vibration problem of viscoelastic solids as applied to optimization of dissipative properties of constructions”, J. Vibr. Contr., 3:1 (1997), 87–102 | DOI

[21] Baz A. M., Active and Passive Vibration Damping, John Wiley Sons, Hoboken, NJ, 2019, xxii+719 pp. | DOI

[22] Vasques C. M. A., Moreira R. A. S., Dias Rodrigues J., “Viscoelastic damping technologies. Part I: Modeling and finite element implementation”, J. Adv. Res. Mech. Eng., 1:2 (2010), 76–95

[23] Moleiro F., Araújo A. L., Reddy J. N., “Benchmark exact free vibration solutions for multilayered piezoelectric composite plates”, Compos. Struct., 182 (2017), 598–605 | DOI

[24] Wang F., Wei Z., Xu B., “Damping performance of viscoelastic material applied to blades”, Rev. Int. Métodos Numér. Cálc. Diseño Ing., 35:1 (2019), 9 | DOI

[25] Gröhlich M., Böswald M., Winter R., “Vibration damping capabilities of treatments with frequency and temperature dependent viscoelastic material properties”, Proc. of 23rd Internat. Congress on Acoustics, 2019, 4273–4280 https://pub.dega-akustik.de/ICA2019/data/articles/000565.pdf

[26] Martinez-Agirre M., Elejabarrieta M. J., “Dynamic characterization of high damping viscoelastic materials from vibration test data”, J. Sound Vibr., 330:16 (2011), 3930–3943 | DOI

[27] Slovikov S. V., Bulbovich R. V., “Methodological aspects of the experimental research of viscoelastic filled polymer composites with complicated dynamic cyclical impacts”, PNRPU Mechanics Bulletin, 2 (2010), 104–112 (In Russian)

[28] Wang Y., Palmer R. A., Schoonover J. R., Aubuchon S. R., “Dynamic mechanical analysis and dynamic infrared linear dichroism study of the frequency-dependent viscoelastic behavior of a poly(ester urethane)”, Vibr. Spectros., 42:1 (2006), 74–77 | DOI

[29] López-Guerra E. A., Solares S. D., “On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges”, Beilstein J. Nanotechnol., 11 (2020), 1409–1418 | DOI

[30] Lawless B. M., Sadeghi H., Temple D. K., Dhaliwal H., Espino D. M., Hukins D. W. L., “Viscoelasticity of articular cartilage: Analysing the effect of induced stressand the restraint of bone in a dynamic environment”, J. Mech. Beh. Biomed. Mater., 75 (2017), 293–301 | DOI

[31] Durand D., Delsanti M., Adam M., Luck J. M., “Frequency Dependence of Viscoelastic Properties of Branched Polymers near Gelation Threshold”, Europhysics Letters, 3:3 (1987), 297–301 | DOI

[32] Li W., Shepherd D. E. T., Espino D. M., “Frequency dependent viscoelastic properties of porcine brain tissue”, J. Mech. Beh. Biomed. Mater., 102 (2020), 103460 | DOI

[33] Muller D. E., “A method for solving algebraic equations using an automatic computer”, Mathematical Tables and Other Aids to Computation, 10:56 (1956), 208–215 | DOI | Zbl

[34] Matveenko V. P., Sevodin M. A., Sevodina N. V., “Applications of Muller’s method and the argument principle to eigenvalue problems in solid mechanics”, Computational Continuum Mechanics, 7:3 (2014), 331–336 (In Russian) | DOI

[35] Kligman E. P., Matveenko V. P., Sevodina N. V., “Determination of natural vibrations of piecewise homogeneous viscoelastic bodies using the ANSYS software package”, Computational Continuum Mechanics, 3:2 (2010), 46–54 (In Russian) | DOI

[36] Korepanova T. O., Matveenko V. P., Sevodina N. V., “Numerical analysis of stress singularities at the tip of intersecting 3d wedge-shaped cracks”, Computational Continuum Mechanics, 4:3 (2011), 68–73 (In Russian) | DOI

[37] Bochkarev S. A. and Lekomtsev S. V., “Hydroelastic stability of coaxial cylindrical shells made of piezoelectric material”, PNRPU Mechanics Bulletin, 2 (2019), 35–48 (In Russian) | DOI

[38] Iurlova N. A., Oshmarin D. A., Sevodina N. V., Iurlov M. A., “Algorithm for solving problems related to the natural vibrations of electro-viscoelastic structures with shunt circuits using ANSYS data”, Int. J. Smart Nano Mater., 10:2 (2019), 156–176 | DOI

[39] Matveenko V. P., Iurlova N. A., Oshmarin D. A., Sevodina N. V., Iurlov M. A., “An approach to determination of shunt circuits parameters for damping vibrations”, Int. J. Smart Nano Mater., 9:2 (2018), 135–149 | DOI

[40] Lekomtsev S. V., Oshmarin D. A., Sevodina N. V., “An approach to the analysis of hydroelastic vibrations of electromechanical systems, based on the solution of the non-classical eigenvalue problem”, Mech. Adv. Mater. Struct., 28:19 (2021), 1957–1964 | DOI

[41] Lekhnitskii S. G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day Series in Mathematical Physics, Holden-Day, Inc., San Francisco, 1963, xii+404 pp. | Zbl

[42] Ansys 17.2 Documentation, SAS IP, Inc., 2016

[43] Shaw M. T., Mac Knight W. J., Introduction to Polymer Viscoelasticity, Wiley, New York, 2005, xix+316 pp. | DOI

[44] Nielsen L. E., Landel R. F., Mechanical Properties of Polymers and Composites, Boca Raton, CRC Press, 1993, 582 pp. | DOI

[45] Cowans J., The Effects of Viscoelastic Behavior on the Operation of a Delayed Resonator Vibration Absorber, MS Thesis. 18, Clemson Univ., 2006 https://tigerprints.clemson.edu/all_theses/18