Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a3, author = {N. A. Zverev and A. V. Zemskov and D. V. Tarlakovskii}, title = {Modelling one-dimensional elastic diffusion processes in~an~orthotropic solid cylinder under unsteady volumetric perturbations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {62--78}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a3/} }
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov AU - D. V. Tarlakovskii TI - Modelling one-dimensional elastic diffusion processes in~an~orthotropic solid cylinder under unsteady volumetric perturbations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 62 EP - 78 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a3/ LA - ru ID - VSGTU_2022_26_1_a3 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %A D. V. Tarlakovskii %T Modelling one-dimensional elastic diffusion processes in~an~orthotropic solid cylinder under unsteady volumetric perturbations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 62-78 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a3/ %G ru %F VSGTU_2022_26_1_a3
N. A. Zverev; A. V. Zemskov; D. V. Tarlakovskii. Modelling one-dimensional elastic diffusion processes in~an~orthotropic solid cylinder under unsteady volumetric perturbations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 62-78. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a3/
[1] Aouadi M., “Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion”, ZAMP, 57:2 (2005), 350–366 | DOI
[2] Bachher M., Sarkar N., “Fractional order magneto-thermoelasticity in a rotating media with one relaxation time”, Math. Models Eng., 2:1 (2016), 57–68 https://www.extrica.com/article/17103
[3] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, Int. J. Thermal Sci., 50:5 (2011), 749–759 | DOI
[4] Kumar R., Chawla V., “Fundamental solution for two-imensional problem in orthotropic piezothermoelastic diffusion media”, Mater. Phys. Mech., 16:2 (2013), 159–174 https://mpm.spbstu.ru/en/article/2013.27.7/
[5] Zhang J., Li Y., “A two-dimensional generalized electromagnetothermoelastic diffusion problem for a rotating half-space”, Math. Probl. Eng., 2014 (2014), 1–12 | DOI
[6] Abbas A. I., “The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium”, J. Meas. Eng., 2:4 (2014), 175–184 https://www.extrica.com/article/15667
[7] Abbas A. I., “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Appl. Math. Model., 39:20 (2015), 6196–6206 | DOI | Zbl
[8] Aouadi M., “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Int. J. Math. Math. Sci., 2006 (2006), 1–15 | DOI
[9] Aouadi M., “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, Int. J. Solids Struct., 44:17 (2007), 5711–5722 | DOI | Zbl
[10] Bhattacharya D., Kanoria M., “The influence of two-temperature fractional order generalized thermoelastic diffusion inside a spherical shell”, IJAIEM, 3:8 (2014), 096–108
[11] Xia R. H., Tian X. G., Shen Y. P., “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, Int. J. Eng. Sci., 47:5–6 (2009), 669–679 | DOI | Zbl
[12] Bhattacharya D., Pal P., Kanoria M., “Finite element method to study elasto-thermodiffusive response inside a hollow cylinder with three-phase-lag effect”, Int. J. Comp. Sci. Eng., 7:1 (2019), 148–156 | DOI
[13] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218:3–4 (2011), 205–215 | DOI | Zbl
[14] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinite medium with a spherical cavity”, Int. J. Thermophys., 33:1 (2012), 172–183 | DOI
[15] Shvets R. M., “On the deformability of anisotropic viscoelastic bodies in the presence of thermodiffusion”, J. Math. Sci., 97:1 (1999), 3830–3839 | DOI
[16] Minov A. V., “Study of the stress-strain state of a hollow cylinder subjected to the thermal diffusion effect of carbon in an axisymmetric thermal field variable in length”, Izv. Vuzov. Mashinostroenie, 2008, no. 10, 21–26 (In Russian)
[17] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Phys. B – Condensed Matter., 496 (2016), 57–68 | DOI
[18] Kumar R., Devi S., “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176 | DOI
[19] Olesiak Z. S., Pyryev Yu. A., “A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder”, Int. J. Eng. Sci., 33:6 (1995), 773–780 | DOI | Zbl
[20] Tripathi J. J., Kedar G. D., Deshmukh K. C., “Generalized thermoelastic diffusion in a thick circular plate including heat source”, Alexandria Eng. J., 55:3 (2016), 2241–2249 | DOI
[21] Poroshina N. I., Ryabov V. M., “Methods for Laplace transform inversion”, Vestnik St. Petersb. Univ. Math., 44:3 (2011), 214–222 | DOI | Zbl
[22] Zemskov A. V., Tarlakovskii D. V., “Polar-symmetric problem of elastic diffusion for isotropic multi-component plane”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012101 | DOI
[23] Zemskov A. V., Tarlakovskii D. V., “Polar-symmetric problem of elastic diffusion for a multicomponent medium”, Problems of Strength and Plasticity, 80:1 (2018), 5–14 (In Russian) | DOI
[24] Zverev N. A., Zemskov A. V., Tarlakovskii D. V., “Modeling of unsteady coupled mechanodiffusion processes in a continuum isotropic cylinder”, Problems of Strength and Plasticity, 82:2 (2020), 156–167 (In Russian) | DOI
[25] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsial'nye uravneniia matematicheskoi fiziki [Basic Differential Equations of Mathematical Physics], Nauka, Moscow, 1962, 768 pp.
[26] Ditkin V. A., Prudnikov A. P., Spravochnik po operatsionnomu ischisleniiu [Guide to operational Calculus], Vyssh. Shk., Moscow, 1965, 568 pp. (In Russian)
[27] Babichev A. P., Babushkina N. A., Bratkovskii A. M., et al., Fizicheskie velichiny: Spravochnik [Physical Quantities: Handbook], Energoatomizdat, Moscow, 1991, 1232 pp. (In Russian)
[28] Nachtrieb N. H., Handler G. S., “A relaxed vacancy model for diffusion incrystalline metals”, Acta Metal., 2:6 (1954), 797–802 | DOI
[29] Petit J., Nachtrieb N. H., “Self-diffusion in liquid gallium”, J. Chem. Phys., 24:5 (1956), 1027–1028 | DOI