Modeling the process of equilibrium crack growth in~a~composite specimen from the standpoints of~the~postcritical deformation mechanics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 48-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ensuring the strength and safety of structures requires studying the issues of crack initiation and equilibrium growth. An analogy between the approaches of phenomenological fracture mechanics, which is based on the complete deformation diagrams usage, and crack propagation mechanics is noted. The applying of previously developed postcritical deformation mechanics models, which describes accompanied by softening equilibrium damage accumulation processes, is advisable. On the example of the numerical, with cohesive elements using, simulation of composite specimen interlayer fracture, the realization of the material deformation complete diagram near the crack tip is demonstrated. The calculated loading diagrams are constructed, the points of the postcritical deformation zone initiation and the beginning of crack growth are shown. Relations between softening modulus value and maximum values of load, crack opening and length are revealed. The influence of the loading system rigidity is noted. It is concluded that consideration of the constructions deformation and fracture processes modeling problems using cohesive elements from the postcritical mechanics deformation standpoints is expedient.
Keywords: postcritical deformation, cohesive element, equilibrium crack growth.
Mots-clés : composite
@article{VSGTU_2022_26_1_a2,
     author = {V. E. Wildemann and A. I. Mugatarov},
     title = {Modeling the process of equilibrium crack growth in~a~composite specimen from the standpoints of~the~postcritical deformation mechanics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a2/}
}
TY  - JOUR
AU  - V. E. Wildemann
AU  - A. I. Mugatarov
TI  - Modeling the process of equilibrium crack growth in~a~composite specimen from the standpoints of~the~postcritical deformation mechanics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 48
EP  - 61
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a2/
LA  - ru
ID  - VSGTU_2022_26_1_a2
ER  - 
%0 Journal Article
%A V. E. Wildemann
%A A. I. Mugatarov
%T Modeling the process of equilibrium crack growth in~a~composite specimen from the standpoints of~the~postcritical deformation mechanics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 48-61
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a2/
%G ru
%F VSGTU_2022_26_1_a2
V. E. Wildemann; A. I. Mugatarov. Modeling the process of equilibrium crack growth in~a~composite specimen from the standpoints of~the~postcritical deformation mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a2/

[1] Wildemann V. E., Sokolkin Yu. V., Tashkinov A. A., Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitsionnykh materialov [Mechanics of Inelastic Deformation and Fracture of Composite Materials], Nauka, Moscow, 1997, 288 pp. (In Russian)

[2] Wildemann V. E., “On the solutions of elastic-plastic problems with contact-type boundary conditions for solids with loss-of-strength zones”, J. Appl. Math. Mech., 62:2 (1998), 281–288 | DOI | Zbl

[3] Kershtein I. M., Klyushnikov V. D., Lomakin E. V., Shesterikov S. A., Osnovy eksperimental'noi mekhaniki razrusheniia [Fundamentals of Experimental Fracture Mechanics], Moscow Univ., Moscow, 1989, 140 pp. (In Russian)

[4] Bazhukov P. S., Vildeman V. E., Ilinyh A. V., Tretyakov M. P., “Effect of stiffness loading system on the equilibrium of the crack growth under quasi-static loading”, PNRPU Mechanics Bulletin, 2013, no. 2, 7–20 (In Russian)

[5] Volkov S. D., Stavrov V. P., Statisticheskaia mekhanika kompozitnykh materialov [Statistical Mechanics of Composite Materials], Belarus State Univ., Minsk, 1978, 206 pp. (In Russian)

[6] Barenblatt G. I., “The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks”, J. Appl. Math. Mech., 23:3 (1959), 622–636 | DOI | Zbl

[7] Rice J. R., “Mathematical analysis in the mechanics of fracture”, Fracture: An Advanced Treaties, v. 2, Mathematical Fundamentals (ed. H. Liebowitz), Academic Press, New York, 1968, 191–311 http://esag.harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf

[8] Dugdale D. S., “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids, 8:2 (1960), 100–104 | DOI

[9] Panasyuk V. V., Predel'noe ravnovesie khrupkikh tel s treshchinami [Limit Equilibrium of Brittle Bodies with Cracks], Nauk. Dumka, Kiev, 1968, 246 pp. (In Russian)

[10] Leonov M. Ya., “Elements of the theory of brittle fracture”, Prikl. Mech. Techn. Fiz [J. Appl. Mech. Tech. Phys.], 1961, no. 3, 85–92 (In Russian)

[11] Wnuk M. P., “Model of the cohesive zone taking into account the triaxiality parameter”, Phys. Mesomech., 4:4 (2001), 9–19 (In Russian)

[12] Wecharatana M., Shah S. P., “Predictions of nonlinear fracture process zone in concrete”, J. Eng. Mech., 109:3 (1983), 1231–1246 | DOI

[13] Bažant Z. P., Oh B. H., “Crack band theory for fracture of concrete”, Mat. Constr., 16:3 (1983), 155–177 | DOI

[14] Ingraffea A. R., Gerstle W. H., “Non-linear fracture models for discrete crack propagation”, Application of Fracture Mechanics to Cementitious Composites, NATO ASI Series, 94, Springer, Dordrecht, 1985, 247–285 | DOI

[15] Shlyannikov V. N., Martínez Pañeda E., Tumanov A. V., Tartygasheva A. M., “Crack tip fields and fracture resistance parameters based on strain gradient plasticity”, Int. J. Sol. Struct., 208–209 (2021), 63–82 | DOI

[16] Volkov S. D., Dubrovina G. I., Sokovnin Yu. P., “The edge problem of fracture mechanics”, Strength of Materials, 10:1 (1978), 1–5 | DOI

[17] Goldstein R. V., Perelmuter M. N., “An interface crack with bonds between the surfaces”, Mech. Solids, 36:1 (2001), 77–92

[18] Lin'kov A. M., “Loss of stability during softening”, Issledovaniya po uprugosti i plastichnosti [Research on Elasticity and Plasticity], v. 14, Problems of Solid Mechanics, Leningrad State Univ., Leningrad, 1982, 41–46 (In Russian)

[19] Chausov N. G., Bogdanovich A. Z., “Modeling of material deformation kinetics in the prefracture zone”, Strength of Materials, 35:2 (2003), 140–148 | DOI

[20] Radchenko V. P., Gorbunov S. V., “The method of solution of the elastic-plastic boundary value problem of tension of strip with stress raisers with allowance for local domains of softening plasticity of material”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 98–110 (In Russian) | DOI | Zbl

[21] Schwalbe K.-H., Scheider I., Cornec A., Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures, Springer, Heidelberg, 2003, xii+89 pp. | DOI

[22] Carpinteri A., Cornetti P., Barpi F., Valente S., “Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory”, Eng. Fract. Mech., 70:14 (2003), 1809–1839 | DOI

[23] de Borst R., “Numerical aspects of cohesive-zone models”, Eng. Fract. Mech., 70:14 (2003), 1743–1757 | DOI

[24] Khan M. A., Silberschmidt V. V., El-Rimawi J., “Controlled failure warning and mitigation of prematurely failing beam through adhesive”, Compos. Struct., 161 (2017), 119–131 | DOI

[25] Piculin S., Nicklisch F., Brank B., “Numerical and experimental tests on adhesive bond behaviour in timber-glass walls”, Int. J. Adh. Adh., 70 (2016), 204–217 | DOI

[26] Xu W., Yu H., Tao C., “Damage and stress evolution in the bondlines of metallic adhesively bonded joints accompanied by bondline thickness effect”, Int. J. Adh. Adh., 59 (2015), 86–97 | DOI

[27] Belnoue J. P. H., Hallett S. R., “Cohesive/adhesive failure interaction in ductile adhesive joints. Part I: A smeared-crack model for cohesive failure”, Int. J. Adh. Adh., 68 (2016), 359–368 | DOI

[28] Valoroso N., de Barros S., “Adhesive joint computations using cohesive zones”, Appl. Adhes. Sci., 1 (2013), 8 | DOI

[29] Silva D. F. O., Campilho R. D. S. G., Silva F. J. G, Carvalho U. T. F., “Application a direct/cohesive zone method for the evaluation of scarf adhesive joints”, Appl. Adhes. Sci., 6:1 (2018), 13 | DOI

[30] Feklistova E. V., Tretyakov M. P., Wildemann V. E., “Numerical implementation issues of the deformation and destruction process of bodies with stress concentrators”, AIP Conf. Proc., 2371 (2021), 050002 | DOI