On covariant non-constancy of distortion and inversed distortion tensors
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with covariant constancy problem for tensors and pseudotensors of an arbitrary rank and weight in an Euclidean space. Requisite preliminaries from pseudotensor algebra and analysis are given. The covariant constancy of pseudotensors are separately considered. Important for multidimensional geometry examples of covariant constant tensors and pseudotensors are demonstrated. In particular, integer powers of the fundamental orienting pseudoscalar satisfied the condition of covariant constancy are introduced and discussed. The paper shows that the distortion and inversed distortion tensors are not actually covariant constant, contrary to the statements of those covariant constancy which can be found in literature on continuum mechanics.
Keywords: fundamental orienting pseudoscalar, distortion, inversed distortion, parallel vector field.
Mots-clés : pseudotensor, covariant constant tensors
@article{VSGTU_2022_26_1_a1,
     author = {Yu. N. Radayev and E. V. Murashkin and T. K. Nesterov},
     title = {On covariant non-constancy of distortion and inversed distortion tensors},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {36--47},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/}
}
TY  - JOUR
AU  - Yu. N. Radayev
AU  - E. V. Murashkin
AU  - T. K. Nesterov
TI  - On covariant non-constancy of distortion and inversed distortion tensors
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 36
EP  - 47
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/
LA  - en
ID  - VSGTU_2022_26_1_a1
ER  - 
%0 Journal Article
%A Yu. N. Radayev
%A E. V. Murashkin
%A T. K. Nesterov
%T On covariant non-constancy of distortion and inversed distortion tensors
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 36-47
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/
%G en
%F VSGTU_2022_26_1_a1
Yu. N. Radayev; E. V. Murashkin; T. K. Nesterov. On covariant non-constancy of distortion and inversed distortion tensors. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/

[1] Rozenfel'd B. A., Mnogomernye prostranstva [ Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Rissian)

[2] Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | Zbl

[3] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, 5, Courier Corporation, New York, 1978, ix+324 pp.

[4] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, xii+277 pp.

[5] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | Zbl

[6] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons, New York, 1964, xii+361 pp. | Zbl

[7] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 | DOI | Zbl

[8] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI

[9] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl

[10] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI | Zbl

[11] Berdichevsky V. L., Variational Principles of Continuum Mechanics, Nauka, Moscow, 1983, 448 pp. (In Russian)

[12] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, eds. S. Flügge, Springer, Berlin, Heidelberg, 1960, 226–858 | DOI

[13] Truesdell C., Noll W., The Nonlinear Field Theories of Mechanics, Springer, Berlin, 2004, xxix+602 pp. | Zbl

[14] Maugin G. A., Material Inhomogeneities in Elasticity, Applied Mathematics and Mathematical Computation, 3, Chapman Hall, London, 1993, xii+276 pp. | Zbl