Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a1, author = {Yu. N. Radayev and E. V. Murashkin and T. K. Nesterov}, title = {On covariant non-constancy of distortion and inversed distortion tensors}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {36--47}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/} }
TY - JOUR AU - Yu. N. Radayev AU - E. V. Murashkin AU - T. K. Nesterov TI - On covariant non-constancy of distortion and inversed distortion tensors JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 36 EP - 47 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/ LA - en ID - VSGTU_2022_26_1_a1 ER -
%0 Journal Article %A Yu. N. Radayev %A E. V. Murashkin %A T. K. Nesterov %T On covariant non-constancy of distortion and inversed distortion tensors %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 36-47 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/ %G en %F VSGTU_2022_26_1_a1
Yu. N. Radayev; E. V. Murashkin; T. K. Nesterov. On covariant non-constancy of distortion and inversed distortion tensors. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a1/
[1] Rozenfel'd B. A., Mnogomernye prostranstva [ Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Rissian)
[2] Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | Zbl
[3] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, 5, Courier Corporation, New York, 1978, ix+324 pp.
[4] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, xii+277 pp.
[5] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | Zbl
[6] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons, New York, 1964, xii+361 pp. | Zbl
[7] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 | DOI | Zbl
[8] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI
[9] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl
[10] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI | Zbl
[11] Berdichevsky V. L., Variational Principles of Continuum Mechanics, Nauka, Moscow, 1983, 448 pp. (In Russian)
[12] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, eds. S. Flügge, Springer, Berlin, Heidelberg, 1960, 226–858 | DOI
[13] Truesdell C., Noll W., The Nonlinear Field Theories of Mechanics, Springer, Berlin, 2004, xxix+602 pp. | Zbl
[14] Maugin G. A., Material Inhomogeneities in Elasticity, Applied Mathematics and Mathematical Computation, 3, Chapman Hall, London, 1993, xii+276 pp. | Zbl