Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_1_a0, author = {Z. V. Beshtokova}, title = {Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--35}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a0/} }
TY - JOUR AU - Z. V. Beshtokova TI - Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 7 EP - 35 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a0/ LA - ru ID - VSGTU_2022_26_1_a0 ER -
%0 Journal Article %A Z. V. Beshtokova %T Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 7-35 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a0/ %G ru %F VSGTU_2022_26_1_a0
Z. V. Beshtokova. Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 1, pp. 7-35. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_1_a0/
[1] Nakhushev A. M., “Loaded equations and their applications”, Differ. Uravn., 19:1 (1983), 86–94 (In Russian) | MR
[2] Dyakonov E. G., “Difference schemes with a splitting operator for nonstationary equations”, Sov. Math., Dokl., 3:1 (1962), 645–648 | MR | Zbl
[3] Samarskii A. A., “On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region”, USSR Comput. Math. Math. Phys., 2:5 (1963), 894–926 | DOI | MR | Zbl
[4] Samarskii A. A., “Local one dimensional difference schemes on non-uniform nets”, USSR Comput. Math. Math. Phys., 3:3 (1963), 572–619 | DOI | MR | Zbl
[5] Budak V. M., Iskenderov A. D., “A class of inverse boundary value problems with unknown coefficients”, Sov. Math., Dokl., 8:1 (1967), 1026–1030 | MR | Zbl
[6] Krall A. M., “The development of general differential and general differential boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | DOI
[7] Ladyzhenskaya O. A., The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, 49, Springer, New York, 1985, xxx+322 pp. | DOI
[8] Samarskii A. A., Teoriia raznostnykh skhem [Theory of Difference Schemes], Nauka, Moscow, 1983, 616 pp. (In Russian)
[9] Andreev V. B., “On the convergence of difference schemes approximating the second and third boundary value problems for elliptic equations”, USSR Comput. Math. Math. Phys., 8:6 (1968), 44–62 | DOI | MR | Zbl
[10] Samarskii A. A., Gulin A. B., Ustoichivost' raznostnykh skhem [Stability of Difference Schemes], Nauka, Moscow, 1973, 415 pp. (In Russian)
[11] Voevodin A. F., Shugrin S. M., Chislennye metody rascheta odnomernykh sistem [Numerical Methods for Calculating One-Dimensional Systems], Nauka, Novosibirsk, 1981, 208 pp. (In Russian)