Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_4_a6, author = {A. N. Kuvshinova and A. V. Tsyganov and J. V. Tsyganova}, title = {Mathematical modeling of parameter identification process of convection-diffusion transport models using the {SVD-based} {Kalman} filter}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {716--737}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a6/} }
TY - JOUR AU - A. N. Kuvshinova AU - A. V. Tsyganov AU - J. V. Tsyganova TI - Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 716 EP - 737 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a6/ LA - ru ID - VSGTU_2021_25_4_a6 ER -
%0 Journal Article %A A. N. Kuvshinova %A A. V. Tsyganov %A J. V. Tsyganova %T Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 716-737 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a6/ %G ru %F VSGTU_2021_25_4_a6
A. N. Kuvshinova; A. V. Tsyganov; J. V. Tsyganova. Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 716-737. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a6/
[1] Leont'ev A. I., Kozhinov I. A., Isaev S. I., et al., Teoriia teplomassoobmena [Theory of Heat and Mass Transfer], Bauman Moscow State Techn. Univ., Moscow, 2018, 462 pp. (In Russian)
[2] Farlow S. J., Partial Differential Equations for Scientists and Engineers, Dover Publ., New York, 1982, ix+414 pp.
[3] Denisov A. M., Vvedenie v teoriiu obratnykh zadach [Introduction to the Theory of Inverse Problems], Moscow State Univ., Moscow, 1994, 208 pp. (In Russian)
[4] Matsevityi Yu. M., Multanovskii A. V., “Identification of heat transfer parameters by the method of optimal dynamic filtering”, High Temperature, 17:5 (1979), 1053–1060 (In Russian)
[5] Karpov A. A., Tikhonova T. A., “Recovery of non-stationary heat flows from experimental data”, Matem. Mod., 12:5 (2000), 101–106 (In Russian)
[6] Simbirskiy G. D., Lantrat V. K., “Application of the Kalman digital filter for parametric identification high-temperature thermocouple”, Autom. Electron. Modern Technology, 2017, no. 11, 68–75 (In Russian)
[7] Pilipenko N. V., Primenenie fil'tra Kalmana v nestatsionarnoi teplometrii [Applying the Kalman Filter in Non-Stationary Heat Metering], ITMO Univ., St. Petersburg, 2017, 36 pp. (In Russian)
[8] Matveev M. G., Kopytin A. V., Sirota E. A., “Combined method for identifying the parameters of a distributed dynamic model”, Proc. IV Int. Conf. (ITNT, 2018), Samara, 2018, 1651–1657 (In Russian)
[9] Pilipenko N. V., Zarichnyak Yu. P., Ivanov V. A., Khalyavin A. M., “Parametric identification of differencial-difference models of heat transfer in one-dimensional bodies based on Kalman filter algorithms”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 20:4 (2020), 584–588 (In Russian) | DOI
[10] Grewal M. S., Andrews A. P., Kalman Filtering. Theory and Practice with MATLAB, John Wiley and Sons, Hoboken, NJ, 2015, xvii+617 pp. | DOI | Zbl
[11] Tsyganov A. V., Tsyganova Yu. V., Kuvshinova A. N., Tapia Garza H. R., “Metaheuristic algorithms for identification of the convection velocity in the convection-diffusion transport model”, CEUR Workshop Proceedings, v. 2258, 2018, 188–196 http://ceur-ws.org/Vol-2258/paper24.pdf
[12] Kuvshinova A. N., “Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements”, Zhurnal SVMO, 21:4 (2019), 469–479 (In Russian) | DOI
[13] Kuvshinova A. N., Tsyganov A. V., Tsyganova Yu. V., Tapia Garza H. R., “Parameter identification algorithm for convection-diffusion transport model”, J. Phys.: Conf. Ser., 1745 (2021), 012110 | DOI
[14] Fomin V. N., Rekurrentnoe otsenivanie i adaptivnaia fil'tratsiia [Recurrent Estimation and Adaptive Filtering], Nauka, Moscow, 1984, 288 pp. (In Russian)
[15] Maybeck P. S., Stochastic Models, Estimation, and Control, v. 1, Mathematics in Science and Engineering, 141, Academic Press, New York, San Francisco, London, 1979, xix+423 pp. | Zbl
[16] Kuvshinova A. N., “Analysis of discrete linear stochastic model of convection-diffusion transport”, Uchenye Zapiski UlGU. Ser. Matem. Inform. Tekhn., 2019, no. 1, 65–69 (In Russian)
[17] Åström K. J., “Maximum likelihood and prediction error methods”, Automatica, 16:5 (1980), 551–574 | DOI
[18] Vasil'ev V. P., Chislennye metody resheniia ekstremal'nykh zadach [Numerical Methods for Solving Extreme Problems], Mir, Moscow, 1982, 520 pp. (In Russian)
[19] Tsyganova Yu. V., Kulikova M. V., “On modern array algorithms for optimal discrete filtering”, Vestn. YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 5–30 (In Russian) | DOI | Zbl
[20] Björck Å., Numerical Methods in Matrix Computations, Texts in Applied Mathematics, 59, Springer, Cham, 2015, xvi+800 pp. | DOI | Zbl
[21] Oshman Y., Bar-Itzhack I. Y., “Square root filtering via covariance and information eigenfactors”, Automatica, 22:5 (1986), 599–604 | DOI | Zbl
[22] Oshman Y., “Square root information filtering using the covariance spectral decomposition”, Proc. of the 27th Conf. on Decision and Control, 1988, 382–387 | DOI
[23] Oshman Y., “Maximum likelihood state and parameter estimation via derivatives of the V-Lambda filter”, J. Guid. Control Dyn., 15:3 (1992), 717–726 | DOI | Zbl
[24] Wang L., Libert G., Manneback P., “Kalman filter algorithm based on singular value decomposition”, Proc. of the 31st Conf. on Decision and Control, 1992, 1224–1229 | DOI
[25] Zhang Y., Dai G., Zhang H., Li Q., “A SVD-based extended Kalman filter and applications to aircraft flight state and parameter estimation”, Proc. of 1994 American Control Conf., 1994, 1809–1813 | DOI
[26] Kulikova M. V., Tsyganova J. V., “Improved discrete-time Kalman filtering within singular value decomposition”, IET Control Theory Appl., 11:15 (2017), 2412–2418, arXiv: [math.OC] 1611.03686 | DOI
[27] Tsyganova J. V., Kulikova M. V., “SVD-based Kalman filter derivative computation”, IEEE Trans. Autom. Control, 62:9 (2017), 4869–4875, arXiv: [cs.SY] 1612.04777 | DOI | Zbl
[28] Alessandrini M., Biagetti G., Crippa P., Falaschetti L., Manoni L., Turchetti C., “Singular value decomposition in embedded systems based on ARM Cortex-M architecture”, Electronics, 10:1 (2021), 34 | DOI