Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_4_a2, author = {S. I. Mitrokhin}, title = {On the asymptotics of spectrum of an even-order differential operator with a delta-function potential}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {634--662}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a2/} }
TY - JOUR AU - S. I. Mitrokhin TI - On the asymptotics of spectrum of an even-order differential operator with a delta-function potential JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 634 EP - 662 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a2/ LA - ru ID - VSGTU_2021_25_4_a2 ER -
%0 Journal Article %A S. I. Mitrokhin %T On the asymptotics of spectrum of an even-order differential operator with a delta-function potential %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 634-662 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a2/ %G ru %F VSGTU_2021_25_4_a2
S. I. Mitrokhin. On the asymptotics of spectrum of an even-order differential operator with a delta-function potential. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 634-662. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a2/
[1] Il'in V. A., “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Math. Notes, 22:5 (1977), 870–882 | DOI | MR | Zbl
[2] Il'in V. A., “Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators”, Differ. Uravn., 22:12 (1986), 2059–2071 (In Russian) | MR
[3] Mitrokhin S. I., “Formulas for the regularized traces of the second order differential operators with discontinuous coefficients”, Mosc. Univ. Math. Bull., 41:6 (1986), 1–5 | MR | Zbl
[4] Mitrokhin S. I., “Trace formulas for a boundary value problem with a functional-differential equation with a discontinuous coefficient”, Differ. Uravn., 22:6 (1986), 927–931 (In Russian) | MR | Zbl
[5] Mitrokhin S. I., “On some spectral properties of second-order differential operators with a discontinuous positive weight function”, Dokl. Akad. Nauk, 356:1 (1997), 13–15 (In Russian) | MR | Zbl
[6] Vinokurov V. A., Sadovnichii V. A., “Arbitrary-order asymptotics of the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on an interval with integrable potential”, Differ. Equ., 34:10 (1998), 1425–1429 | MR | Zbl
[7] Mitrokhin S. I., “The asymptotics of the eigenvalues of a fourth order differential operator with summable coefficients”, Mosc. Univ. Math. Bull., 64:3 (2009), 102–104 | DOI | MR | Zbl
[8] Mitrokhin S. I., “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufimsk. Mat. Zh., 3:4 (2011), 95–115 (In Russian) | Zbl
[9] Mitrokhin S. I., “Spectral properties of boundary value problems for functional-differential equations with integrable coefficients”, Differ. Equ., 46:8 (2010), 1095–1103 | DOI | Zbl
[10] Mitrokhin S. I., “Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 136–149 (In Russian) | DOI
[11] Savchuk A. M., Shkalikov A. A., “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl
[12] Savchuk A. M., “First-order regularised trace of the Sturm-Liouville operator with $\delta$-potential”, Russian Math. Surveys, 55:6 (2000), 1168–1169 | DOI | DOI | MR | Zbl
[13] Vinokurov V. A., Sadovnichii V. A., “The asymptotics of eigenvalues and eigenfunctions and a trace formula for a potential with delta functions”, Differ. Equ., 38:6 (2002), 772–789 | DOI | MR | Zbl
[14] Borisov D. I., “Gaps in the spectrum of the Laplacian in a strip with periodic delta interaction”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S16–S23 | DOI | DOI | Zbl
[15] Konechnaya N. N., Safonova T. A., Tagirova R. N. Asymptotics of the eigenvalues and regularized trace of the first-order Sturm–Liouville operator with $\delta$-potential, Vestnik of Northern (Arctic) Federal University. Ser. Natural Science, 2016, no. 1, 104–113 (In Russian) | DOI
[16] Kochubei A. N., “Elliptic operators with boundary conditions on a subset of measure zero”, Funct. Anal. Appl., 16:2 (1982), 137–139 | DOI | MR | Zbl
[17] Berezin F. A., Faddeev L. D., “A remark on Schrödinger's equation with a singular potential”, Sov. Math., Dokl., 2:5 (1961), 372–375 | MR | Zbl
[18] Geiler V. A., Margulis V. A., Chuchaev I. I., “Potentials of zero radius and Carleman operators”, Siberian Math. J., 36:4 (1995), 714–726 | DOI | MR | Zbl
[19] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Nauka, Moscow, 1969, 528 pp. (In Russian)
[20] Mitrokhin S. I., “Asymptotics of eigenvalues of differential operator with alternating weight function”, Russian Math. (Iz. VUZ), 62:6 (2018), 27–42 | DOI | Zbl
[21] Bellman R., Cooke K. L., Differential-Difference Equations, Mathematics in Science and Engineering, 6, Academic Press, New York, London, 1963, xvi+462 pp. | Zbl
[22] Sadovnichii V. A., Lyubishkin V. A., “Some new results of the theory of regularized traces of differential operators”, Differ. Uravn., 18:1 (1982), 109–116 (In Russian) | MR | Zbl