Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_4_a1, author = {L. N. Krivonosov and V. A. Lukyanov}, title = {Hermitian metrics with (anti-)self-dual {Riemann} tensor}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {616--633}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a1/} }
TY - JOUR AU - L. N. Krivonosov AU - V. A. Lukyanov TI - Hermitian metrics with (anti-)self-dual Riemann tensor JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 616 EP - 633 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a1/ LA - ru ID - VSGTU_2021_25_4_a1 ER -
%0 Journal Article %A L. N. Krivonosov %A V. A. Lukyanov %T Hermitian metrics with (anti-)self-dual Riemann tensor %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 616-633 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a1/ %G ru %F VSGTU_2021_25_4_a1
L. N. Krivonosov; V. A. Lukyanov. Hermitian metrics with (anti-)self-dual Riemann tensor. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 616-633. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a1/
[1] Besse A. L., Einstein Manifolds, Springer-Verlag, Berlin, 1987, xii+512 pp. | DOI | Zbl
[2] Atiyah M. F., Hitchin N., The Geometry and Dynamics of Magnetic Monopoles, Porter Lectures / Princeton Legacy Library, 11, Princeton University Press, Princeton, New Jersey, 1988, vii+134 pp. | DOI
[3] Petrov A. Z., Novye metody v obshchei teorii otnositel'nosti [New Methods in General Relativity], Nauka, Moscow, 1966, 496 pp. (In Russian) | Zbl
[4] Eguchi T., Gilkey P. B., Hanson A. J., “Gravitation, gauge theories and differential geometry”, Phys. Reports, 66:6 (1980), 213–393 | DOI
[5] Eguchi T., Hanson A. J., “Asymptotically flat self-dual solutions to euclidean gravity”, Phys. Lett. B, 74:3 (1978), 249–251 | DOI
[6] Gibbons G. W., Hawking S. W., “Gravitational multi-instantons”, Phys. Lett. B, 78:4 (1978), 430–432 | DOI
[7] Koshti S., Dadhich N., The general self-dual solution of the Einstein equations, 1994, 14 pp., arXiv: gr-qc/9409046
[8] Krivonosov L. N., Luk'yanov V. A., “Specificity of Petrov classification of (anti-)self-dual zero signature metrics”, Russian Math. (Iz. VUZ), 64:9 (2020), 50–60 | DOI | DOI | Zbl
[9] Weil A., Introduction à L'Étude des Variétés Kähleriennes, Hermann, Paris, 1958, 175 pp. (In French)
[10] Hitchin N., “Compact four-dimensional Einstein manifolds”, J. Differential Geom., 9:3 (1974), 435–441 | DOI | Zbl
[11] Hitchin N. J., “Kählerian twistor spaces”, Proc. London Math. Soc., 43:1 (1981), 133–150 | DOI | Zbl
[12] Chen B.-Y., “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Differential Geom., 13:4 (1978), 547–558 | DOI | Zbl
[13] Derdziński A., “Self-dual Kähler manifolds and Einstein manifolds of dimension four”, Compos. Math., 49:3 (1983), 405–433 | Zbl
[14] Itoh M., “Self-duality of Kähler surfaces”, Compos. Math., 51:2 (1984), 265–273 | Zbl
[15] Jelonek W., “Compact Kähler surfaces with harmonic anti-self-dual Weyl tensor”, Diff. Geom. Appl., 16:3 (2002), 267–276 | DOI | Zbl
[16] Arsen'eva O. E., “Selfdual geometry of generalized Kählerian manifolds”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 447–457 | DOI | MR | Zbl