Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_3_a7, author = {A. I. Besportochnyy and A. N. Burmistrov}, title = {On the place of sonic points in a critical flow}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {519--530}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a7/} }
TY - JOUR AU - A. I. Besportochnyy AU - A. N. Burmistrov TI - On the place of sonic points in a critical flow JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 519 EP - 530 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a7/ LA - ru ID - VSGTU_2021_25_3_a7 ER -
%0 Journal Article %A A. I. Besportochnyy %A A. N. Burmistrov %T On the place of sonic points in a critical flow %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 519-530 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a7/ %G ru %F VSGTU_2021_25_3_a7
A. I. Besportochnyy; A. N. Burmistrov. On the place of sonic points in a critical flow. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 519-530. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a7/
[1] Petrov K. P., Aerodinamika elementov letatel'nykh apparatov [Aerodynamics of Aircraft Components], Mashinostroenie, Moscow, 1985, 272 pp. (In Russian)
[2] Gilbarg D., Shiffman M., “On bodies achieving extreme value of the critical Mach number. I”, Indiana Univ. Math. J., 3:2 (1954), 209–230 | DOI | Zbl
[3] Brutyan M. A., Lyapunov S. V., “Optimization of the shape of symmetric plane bodies with the aim to increase the critical Mach number”, Uchen. Zap. TsAGI, 12:5 (1981), 10–22 (In Russian)
[4] Vyshinsky V. V., “Influence of the elongation of the cylindrical section on the drag of the fuselage at transonic flight speeds”, Uchen. Zap. TsAGI, 16:3 (1985), 110–113 (In Russian)
[5] Kraiko A. N., “Planar and axially symmetric configurations which are circumvented with the maximum critical Mach number”, J. Appl. Math. Mech., 51:6 (1987), 723–730 | DOI | Zbl
[6] Vyshinsky V. V., Kuznetsov E. N., “Investigation of bow parts of bodies of revolution with the Ryabushinsky generatrix”, Uchen Zap. TsAGI, 23:1 (1992), 3–8 (In Russian)
[7] Barinov V. A., Bolsunovsky A. L., Buzoverya N. P., Kuznetsov E. N., Skomorokhov S. I., Chernyshev I. L., “Study on the model of the near-sonic aircraft with the Ryabushinsky nose part of the fuselage”, Dokl. Phys., 52:4 (2007), 553–555 | DOI | Zbl
[8] Sizykh G. B., “Entropy value on the surface of a non-symmetric convex bow part of a body in the supersonic flow”, Fluid Dyn., 54 (2019), 907–911 | DOI | DOI | Zbl
[9] Petrov A. G., Yudin M. A., “On cylinder dynamics in bounded ideal fluid flow with constant vorticity”, Fluid Dyn., 54:7 (2019), 898–906 | DOI | DOI | Zbl
[10] Sizykh G. B., “System of orthogonal curvilinear coordinates on the isentropic surface behind a detached bow shock wave”, Fluid Dyn., 55:7 (2020), 899–903 | DOI | DOI
[11] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 780–789 (In Russian) | DOI | Zbl
[12] Sizykh G. B., “Maximum principle for subsonic flow with variable entropy”, Civil Aviation High Technologies, 20:2 (2017), 74–82 (In Russian)
[13] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Proc. of MIPT, 12:4 (2020), 171–176 (In Russian)
[14] Vyshinsky V. V., Sizykh G. B., “Verification of the calculation of stationary subsonic flows and presentation of results”, Smart Modeling for Engineering Systems, GCM50 2018. Smart Innovation, Systems and Technologies, v. 133, Springer, Cham, 2019, 228–235 | DOI
[15] Markov V. V., Sizykh G. B., “Existence criterion for the equations solution of ideal gas motion at given helical velocity”, Izv. VUZ. Applied Nonlinear Dynamics, 28:6 (2020), 643–652 (In Russian) | DOI
[16] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki [Lectures on the Basics of Gas Dynamics], Institute of Computer Studies, Moscow, Izhevsk, 2003, 336 pp. (In Russian)