On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 457-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the constitutive pseudoscalars associated with the theory of hemitropic micropolar continuum. The basic concepts of pseudotensor algebra are presented. The pseudotensor form of the hemitropic micropolar elastic potential is given, based on 9 constitutive pseudoscalars (3 are pseudoscalars and 6 are absolute scalars). The weights of the constitutive pseudoscalars are calculated. The fundamental orienting pseudoscalar of weight \(+1\) is used to formulate transformation rules for constitutive pseudoscalars. The governing equations of the hemitropic micropolar elastic continuum are derived. The equations of the dynamics of the hemitropic micropolar continuum are discussed in terms of pseudotensors in right- and left-handed Cartesian coordinate systems. The presence of inverse modes along with normal ones is shown for wave propagation across the hemitropic micropolar continuum.
Keywords: micropolar hemitropic continuum, relative tensor, fundamental orienting pseudoscalar, inversion of space
Mots-clés : microrotation, pseudoscalar, polarisation.
@article{VSGTU_2021_25_3_a3,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {457--474},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 457
EP  - 474
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/
LA  - ru
ID  - VSGTU_2021_25_3_a3
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 457-474
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/
%G ru
%F VSGTU_2021_25_3_a3
E. V. Murashkin; Yu. N. Radayev. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 457-474. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/

[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci., 43:7 (2001), 1579–1589 | DOI | Zbl

[2] Mackay T., Lakhtakia A., “Negatively refracting chiral metamaterials: a review”, SPIE Reviews, 1:1 (2010), 018003 | DOI

[3] Tomar S., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Model., 37:22 (2013), 9409–9418 | DOI | MR | Zbl

[4] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–902 | DOI | MR

[5] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | MR | Zbl

[6] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | MR | Zbl

[7] Schouten J. A., Tensor Analysis for Physicists, Clarendon Press, Oxford, 1954, xii+277 pp. | MR | Zbl

[8] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons Inc, New York, 1964, xii+361 pp. | MR | Zbl

[9] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, 5, Courier Corporation, New York, 1978, ix+324 pp. | MR

[10] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov [Foundations of Tensor Analysis and the Theory of Covariants], Nauka, Moscow, 1978, 411 pp. (In Russian) | MR | Zbl

[11] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya [Foundations of Tensor Analysis and Covariant Theory], Nauka, Moscow, 1951, 427 pp. (In Russian) | MR | Zbl

[12] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI

[13] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl

[14] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI | Zbl

[15] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373–377 | DOI | MR | Zbl

[16] Veblen O., Invariants of Quadratic Differential Forms, Cambridge Tracts in Mathematics and Mathematical Physics, 24, Univ. Press, Cambridge, 1927, viii+102 pp. | Zbl

[17] Rozenfel'd B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian) | MR | Zbl

[18] Murashkin E. V., Radaev Yu. N., “On a generalization of the algebraic Hamilton–Cayley theory”, Mech. Solids, 55:6 (2021) | DOI

[19] Nowacki W., Theory of Micropolar Elasticity. Course held at the Department for Mechanics of Deformable Bodies, July 1970, Udine, International Centre for Mechanical Sciences. Courses and Lectures, 25, Springer, Wien, New York, 1972, 286 pp. | DOI | Zbl

[20] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | MR | Zbl

[21] Besdo D., “Ein Beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums [A contribution to the nonlinear theory of the Cosserat–continuum]”, Acta Mechanica, 20:1 (1974), 105–131 (In German) | DOI | MR | Zbl

[22] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI | Zbl

[23] Kopff A., The Mathematical Theory of Relativity, Methuen, London, 1923, viii+214 pp. | MR | Zbl

[24] Radayev Yu. N., Prostranstvennaya zadacha matematicheskoy teorii plastichnosti [The Spatial Problem of the Mathematical Theory of Plasticity], Samara, Samara Univ., 2006, 340 pp. (In Russian)