Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_3_a3, author = {E. V. Murashkin and Yu. N. Radayev}, title = {On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {457--474}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/} }
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 457 EP - 474 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/ LA - ru ID - VSGTU_2021_25_3_a3 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 457-474 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/ %G ru %F VSGTU_2021_25_3_a3
E. V. Murashkin; Yu. N. Radayev. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 457-474. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a3/
[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci., 43:7 (2001), 1579–1589 | DOI | Zbl
[2] Mackay T., Lakhtakia A., “Negatively refracting chiral metamaterials: a review”, SPIE Reviews, 1:1 (2010), 018003 | DOI
[3] Tomar S., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Model., 37:22 (2013), 9409–9418 | DOI | MR | Zbl
[4] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–902 | DOI | MR
[5] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | MR | Zbl
[6] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | MR | Zbl
[7] Schouten J. A., Tensor Analysis for Physicists, Clarendon Press, Oxford, 1954, xii+277 pp. | MR | Zbl
[8] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons Inc, New York, 1964, xii+361 pp. | MR | Zbl
[9] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, 5, Courier Corporation, New York, 1978, ix+324 pp. | MR
[10] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov [Foundations of Tensor Analysis and the Theory of Covariants], Nauka, Moscow, 1978, 411 pp. (In Russian) | MR | Zbl
[11] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya [Foundations of Tensor Analysis and Covariant Theory], Nauka, Moscow, 1951, 427 pp. (In Russian) | MR | Zbl
[12] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI
[13] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl
[14] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI | Zbl
[15] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373–377 | DOI | MR | Zbl
[16] Veblen O., Invariants of Quadratic Differential Forms, Cambridge Tracts in Mathematics and Mathematical Physics, 24, Univ. Press, Cambridge, 1927, viii+102 pp. | Zbl
[17] Rozenfel'd B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian) | MR | Zbl
[18] Murashkin E. V., Radaev Yu. N., “On a generalization of the algebraic Hamilton–Cayley theory”, Mech. Solids, 55:6 (2021) | DOI
[19] Nowacki W., Theory of Micropolar Elasticity. Course held at the Department for Mechanics of Deformable Bodies, July 1970, Udine, International Centre for Mechanical Sciences. Courses and Lectures, 25, Springer, Wien, New York, 1972, 286 pp. | DOI | Zbl
[20] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | MR | Zbl
[21] Besdo D., “Ein Beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums [A contribution to the nonlinear theory of the Cosserat–continuum]”, Acta Mechanica, 20:1 (1974), 105–131 (In German) | DOI | MR | Zbl
[22] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI | Zbl
[23] Kopff A., The Mathematical Theory of Relativity, Methuen, London, 1923, viii+214 pp. | MR | Zbl
[24] Radayev Yu. N., Prostranstvennaya zadacha matematicheskoy teorii plastichnosti [The Spatial Problem of the Mathematical Theory of Plasticity], Samara, Samara Univ., 2006, 340 pp. (In Russian)