Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 435-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of assessing the strength and resource of critical engineering objects is considered. The operating conditions of objects are characterized by high-temperature non-stationary thermomechanical effects, which lead to degradation of the initial strength properties of structural materials by the mechanism of long-term strength. From the standpoint of the mechanics of a damaged medium, a mathematical model has been developed that describes the kinetics of the stress-strain state and the accumulation of damage during material degradation by the mechanism of long-term strength under conditions of a complex multiaxial stress state. An experimental-theoretical method for finding the material parameters and scalar functions of the constitutive relations of the mechanics of a damaged medium based on the results of specially set experiments on laboratory samples is proposed. The results of experimental studies and numerical modeling of the short-term high-temperature creep of VT6 titanium alloy under uniaxial and multiaxial stress states are presented. The numerical results are compared with the data of field experiments. Particular attention is paid to the issues of modeling the process of unsteady creep for complex deformation modes, accompanied by the rotation of the main areas of stress tensors, deformations and creep deformations, taking into account the effect of an aggressive environment, which is simulated by preliminary hydrogenation of laboratory samples to various hydrogen concentrations by mass. It is shown that the developed version of the constitutive relations of the mechanics of a damaged medium allows, with sufficient accuracy for engineering calculations, to describe unsteady creep and long-term strength of structural alloys under multiaxial stress states, taking into account the effect of an aggressive medium (hydrogen corrosion).
Keywords: unsteady creep, long-term strength, damage, resource, mathematical modeling, basic experiment, material parameters, numerical and full-scale experiment, aggressive environment, hydrogen saturation.
@article{VSGTU_2021_25_3_a2,
     author = {L. A. Igumnov and I. A. Volkov and D. A. Kazakov and D. N. Shishulin and I. A. Modin},
     title = {Numerical simulation of the creep process of titanium alloy {VT6} under a multi-axis stress state taking into account the influence of an aggressive environment},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {435--456},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a2/}
}
TY  - JOUR
AU  - L. A. Igumnov
AU  - I. A. Volkov
AU  - D. A. Kazakov
AU  - D. N. Shishulin
AU  - I. A. Modin
TI  - Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 435
EP  - 456
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a2/
LA  - ru
ID  - VSGTU_2021_25_3_a2
ER  - 
%0 Journal Article
%A L. A. Igumnov
%A I. A. Volkov
%A D. A. Kazakov
%A D. N. Shishulin
%A I. A. Modin
%T Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 435-456
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a2/
%G ru
%F VSGTU_2021_25_3_a2
L. A. Igumnov; I. A. Volkov; D. A. Kazakov; D. N. Shishulin; I. A. Modin. Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 435-456. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a2/

[1] Volkov I. A., Korotkikh Yu. G., Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State of Damaged Viscoelastoplastic Media], Fizmatlit, Moscow, 2008, 424 pp. (In Russian)

[2] Collins J. A., Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention,, John Wiley and Sons, New York, 1981

[3] Dul'nev R. A., Kotov P. I., Termicheskaia ustalost' metallov [Thermal Fatigue of Metals], Mashinostroenie, M., 1980, 200 pp. (In Russian)

[4] Kazantsev A. G., “Interaction of low-cycle fatigue and creep in nonisothermal loading”, Strength Mater., 17:5 (1985), 610–617 | DOI

[5] Rabotnov Yu. N., Creep of Structural Members, North‐Holland Series in Applied Mathematics and Mechanics, North-Holland, Amsterdam, 1969, ix+822 pp.

[6] Gokhfeld D. A., Sadakov O. S., Plastichnost' i polzuchest' elementov konstruktsii pri povtornykh nagruzheniiakh [Plasticity and Creep of Structural Elements under Repeated Loading], Mashinostroenie, Moscow, 1984, 256 pp. (In Russian)

[7] Degtyarev V. P., Plastichnost' i polzuchest' mashinostroitel'nykh konstruktsii [Plasticity and Creep of Mechanical-Engineering Structures], Mashinostroenie, Moscow, 1967, 130 pp. (In Russian)

[8] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [The Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, 1968, 400 pp. (In Russian)

[9] Lokoshchenko A. M., Creep and Long-Term Strength of Metals, CRC Press, Boca, Raton, 2018, xviii+545 pp. | DOI

[10] Boyle J. T., Spence J., Stress Analysis for Creep, Butterworth, London, 1980, viii+283 pp. | DOI

[11] Volkov I. A., Igumnov L. A., Korotkikh Yu. G., Prikladnaia teoriia viazkoplastichnosti [Applied Theory of Viscoplasticity], Nizhny Novgorod State Univ., Nizhny Novgorod, 2015, 318 pp. (In Russian)

[12] Bondar' V. S., Neuprugost'. Varianty teorii [Inelasticity. Theory Variants], Fizmatlit, Moscow, 2004, 144 pp. (In Russian)

[13] Perzyna P., “Fundamental problems in viscoplasticity”, Advances in Applied Mechanics, 9 (1966), 243–377 | DOI

[14] Shevchenko Iu. N., Terekhov R. G., Fizicheskie uravneniia termoviazkoplastichnosti [Physical Equations of Thermoviscoplasticity], Nauk. dumka, Kiev, 1982, 240 pp. (In Russian)

[15] Chaboche J. L., “Constitutive equations for cyclic plasticity and cyclic viscoplasticity”, Int. J. Plasticity, 5:3 (1989), 247–302 | DOI | Zbl

[16] Malinin N. N., Khadjinsky G. M., “Theory of creep with anisotropic hardening”, Int. J. Mech. Sci., 14:4 (1972), 235–246 | DOI | Zbl

[17] Miller A., “An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I—Equations development and analytical procedures”, J. Eng. Mater. Technol., 98:2 (1976), 97–105 | DOI

[18] Krieg R. D., Swearengen J. C., Jones W. B., “A physically-based internal variable model for rate-dependent plasticity”, Unified Constitutive Equations for Creep and Plasticity, Springer, Dordrecht, 1978, 245–271 | DOI

[19] Ohashi Y., Ohno N., Kawai M., “Evaluation of creep constitutive equations for type 304 stainless steel under repeated multiaxial loading”, J. Eng. Mater. Technol., 104:3 (1982), 155–164 | DOI

[20] Volkov I. A., Igumnov L. A., Vvedenie v kontinual'nuiu mekhaniku povrezhdennoi sredy [Introduction to the Continuum Mechanics of a Damaged Medium], Fizmatlit, Moscow, 2017, 304 pp. (In Russian)

[21] Volkov I. A., Igumnov L. A., Kazakov D. A., Mironov A. A., Tarasov I. S., Shishulin D. N., Smetanin I. V., “A damaged medium model for describing the processof long-term strength of structural materials (metals and their alloys)”, Problems of Strength and Plasticity, 79:3 (2017), 285–300 (In Russian) | DOI

[22] Samarin Yu. P., Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoystvami [Equations of State of Materials with Complex Rheological Properties], Kuibyshev State Univ., Kuibyshev, 1979, 84 pp. (In Russian)

[23] Radchenko V. P., Samarin Yu. P., Khrenov S. M., “Determining equations for the materials in the presence of three stages of creep”, Dokl. Akad. Nauk SSSR, 288:3 (1986), 571–574 (In Russian)

[24] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Destruction of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 263 pp. (In Russian)

[25] Kazakov D. A., Kapustin S. A., Korotkikh Yu. G., Modelirovanie protsessov deformirovaniia i razrusheniia materialov i konstruktsii [Modeling the Processes of Deformation and Destruction of Materials and Structures], Nizhny Novgorod State Univ., Nizhny Novgorod, 1994, 226 pp. (In Russian)

[26] Igumnov L. A., Kazakov D. A., Shishulin D. N., Modin I. A., Zhegalov D. V., “Experimental studies of high-temperature creep of titanium alloy VT6 under conditions of a complex stress state under the influence of an aggressive medium”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 286–302 (In Russian) | DOI | Zbl

[27] Balandin V. V., Kochetkov A. V., Krylov S. V., Modin I. A., “Numerical and experimental study of the penetration of a package of woven metal grid by a steel ball”, J. Phys.: Conf. Ser., 1214 (2019), 012004 | DOI

[28] Igumnov L. A., Vlasov S. Y., Kazakov D. A., Zhegalov D. V., Modin I. A., “Experimental studies of elastic-plastic deformation of structural materials under conditions of triaxial loading”, Multiscale Solid Mechanics, Advanced Structured Materials, 141, Springer, Cham, 2021, 203–212 | DOI

[29] Kochetkov A. V., Leont'ev N. V., Modin I. A., Savikhin A. O., “Study of the stress-strain and strength properties of the metal woven grids”, Vestn. Tomsk. Gosud. Univ. Matem. Mekh. [Tomsk State University Journal of Mathematics and Mechanics], 2018, no. 52, 53–62 (In Russian) | DOI

[30] Modin I. A., Kochetkov A. V., Leontiev N. V., “Numerical simulation of quasistatic and dynamic compression of a granular layer”, AIP Conference Proceedings, 2116:1 (2019), 270003 | DOI