Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_3_a11, author = {G. B. Sizykh}, title = {Second integral generalization of the {Crocco} invariant {for~3D} flows behind detached bow shock wave}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {588--595}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/} }
TY - JOUR AU - G. B. Sizykh TI - Second integral generalization of the Crocco invariant for~3D flows behind detached bow shock wave JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 588 EP - 595 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/ LA - ru ID - VSGTU_2021_25_3_a11 ER -
%0 Journal Article %A G. B. Sizykh %T Second integral generalization of the Crocco invariant for~3D flows behind detached bow shock wave %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 588-595 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/ %G ru %F VSGTU_2021_25_3_a11
G. B. Sizykh. Second integral generalization of the Crocco invariant for~3D flows behind detached bow shock wave. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 588-595. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/
[1] Golubkin V. N., Sizykh G. B., “On the vorticity behind 3-D detached bow shock wave”, Adv. Aerodyn., 1 (2019), 15 | DOI
[2] Crocco L., “Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation [A new stream function for researching the movement of gases with rotation]”, ZAMM, 17:1 (1937), 1–7 (In German) | DOI | Zbl
[3] Golubkin V. N., Manuylovich I. S., Markov V. V., “Fifth streamline invariant to axisymmetric swirling gas flows”, Proceedings of MIPT, 10:2 (2018), 131–135 (In Russian)
[4] Golubkin V. N., Sizykh G. B., “Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave”, Russian Math. (Iz. VUZ), 63:12 (2019), 45–48 | DOI | DOI | Zbl
[5] Sizykh G. B., “System of Orthogonal Curvilinear Coordinates on the Isentropic Surface Behind a Detached Bow Shock Wave”, Fluid Dyn., 55:7 (2020), 899–903 | DOI | DOI
[6] von Mises R., Mathematical Theory of Compressible Fluid Flow, Applied Mathematics and Mechanics, 3, Academic Press, New York, 1958, vii+514 pp. | DOI | Zbl
[7] Prim R., Truesdell C., “A derivation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI | Zbl
[8] Truesdell C., The Kinematics of Vorticity, IU Press, Bloomington, 1954, xx+232 pp. | Zbl
[9] Sizykh G. B., “Entropy Value on the Surface of a Non-symmetric Convex Bow Part of a Body in the Supersonic Flow”, Fluid Dyn., 54:7 (2019), 907–911 | DOI | DOI | Zbl
[10] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 780–789 (In Russian) | DOI | Zbl
[11] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Proceedings of MIPT, 12:4 (2020), 171–176 (In Russian)
[12] Pontryagin L. S., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], Regular and Chaotic Dynamics, Izhevsk, 2001, 400 pp. (In Russian)
[13] Truesdell C., “On curved shocks in steady plane flow of an ideal fluid”, J. Aeronaut. Sci., 19:12 (1952), 826–828 | DOI | Zbl
[14] Hayes W. D., “The vorticity jump across a gasdynamic discontinuity”, J. Fluid Mech., 1957, no. 2, 595–600 | DOI | Zbl