@article{VSGTU_2021_25_3_a11,
author = {G. B. Sizykh},
title = {Second integral generalization of the {Crocco} invariant {for~3D} flows behind detached bow shock wave},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {588--595},
year = {2021},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/}
}
TY - JOUR AU - G. B. Sizykh TI - Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 588 EP - 595 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/ LA - ru ID - VSGTU_2021_25_3_a11 ER -
%0 Journal Article %A G. B. Sizykh %T Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 588-595 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/ %G ru %F VSGTU_2021_25_3_a11
G. B. Sizykh. Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 588-595. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a11/
[1] Golubkin V. N., Sizykh G. B., “On the vorticity behind 3-D detached bow shock wave”, Adv. Aerodyn., 1 (2019), 15 | DOI
[2] Crocco L., “Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation [A new stream function for researching the movement of gases with rotation]”, ZAMM, 17:1 (1937), 1–7 (In German) | DOI | Zbl
[3] Golubkin V. N., Manuylovich I. S., Markov V. V., “Fifth streamline invariant to axisymmetric swirling gas flows”, Proceedings of MIPT, 10:2 (2018), 131–135 (In Russian)
[4] Golubkin V. N., Sizykh G. B., “Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave”, Russian Math. (Iz. VUZ), 63:12 (2019), 45–48 | DOI | DOI | Zbl
[5] Sizykh G. B., “System of Orthogonal Curvilinear Coordinates on the Isentropic Surface Behind a Detached Bow Shock Wave”, Fluid Dyn., 55:7 (2020), 899–903 | DOI | DOI
[6] von Mises R., Mathematical Theory of Compressible Fluid Flow, Applied Mathematics and Mechanics, 3, Academic Press, New York, 1958, vii+514 pp. | DOI | Zbl
[7] Prim R., Truesdell C., “A derivation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI | Zbl
[8] Truesdell C., The Kinematics of Vorticity, IU Press, Bloomington, 1954, xx+232 pp. | Zbl
[9] Sizykh G. B., “Entropy Value on the Surface of a Non-symmetric Convex Bow Part of a Body in the Supersonic Flow”, Fluid Dyn., 54:7 (2019), 907–911 | DOI | DOI | Zbl
[10] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 780–789 (In Russian) | DOI | Zbl
[11] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Proceedings of MIPT, 12:4 (2020), 171–176 (In Russian)
[12] Pontryagin L. S., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], Regular and Chaotic Dynamics, Izhevsk, 2001, 400 pp. (In Russian)
[13] Truesdell C., “On curved shocks in steady plane flow of an ideal fluid”, J. Aeronaut. Sci., 19:12 (1952), 826–828 | DOI | Zbl
[14] Hayes W. D., “The vorticity jump across a gasdynamic discontinuity”, J. Fluid Mech., 1957, no. 2, 595–600 | DOI | Zbl