Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_3_a1, author = {A. I. Kozhanov and A. V. Dyuzheva}, title = {The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {423--434}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/} }
TY - JOUR AU - A. I. Kozhanov AU - A. V. Dyuzheva TI - The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 423 EP - 434 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/ LA - ru ID - VSGTU_2021_25_3_a1 ER -
%0 Journal Article %A A. I. Kozhanov %A A. V. Dyuzheva %T The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 423-434 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/ %G ru %F VSGTU_2021_25_3_a1
A. I. Kozhanov; A. V. Dyuzheva. The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 423-434. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/
[1] Cannon J. R., “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI
[2] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR | Zbl
[3] Ionkin N. I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (In Russian) | MR | Zbl
[4] Bouziani A., Benouar N.-E., “Mixed problem with integral conditions for a third order parabolic equation”, Kobe J. Math., 15:1 (1998), 47–58 | Zbl
[5] Bouziani A., “On a class of parabolic equations with a nonlocal boundary condition”, Bull. Cl. Sci., Acad. R. Belg., 10:1 (1999), 61–77 | DOI | Zbl
[6] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (In Russian) | MR | Zbl
[7] Ionkin N. I., Morozova V. A., “The two-dimensional heat equation with nonlocal boundary conditions”, Differ. Equ., 36:7 (2000), 982–987 | DOI | MR | Zbl
[8] Pul'kina L. S., “A nonlocal problem with integral conditions for a hyperbolic equation”, Differ. Equ., 40:7 (2004), 947–953 | DOI | MR | Zbl
[9] Ivanchov N. I., “Boundary value problems for a parabolic equation with integral conditions”, Differ. Equ., 40:4 (2004), 591–609 | DOI | MR | Zbl
[10] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl
[11] Abdrakhmanov A. M., Kozhanov A. I., “A problem with a nonlocal boundary condition for one class of odd-order equations”, Russian Math. (Iz. VUZ), 51:5 (2007), 1–10 | DOI | MR | Zbl
[12] Kozhanov A. I., “On the solvability of boundary value problems with nonlocal and integral conditions for parabolic equations”, Nonlinear Boundary-Value Problems, 20 (2010), 54–76 (In Russian) http://iamm.su/upload/iblock/e5f/54_76.pdf | Zbl
[13] Kozhanov A. I., Pulkina L. S., “On the solvability of some boundary value problems with a shift for linear hyperbolic equations”, Mathematical Journal (Almaty), 9:2 (2009), 78–92 (In Russian) | Zbl
[14] Kozhanov A. I., “On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations”, Differ. Equ., 51:8 (2015), 1043–1050 | DOI | DOI | Zbl
[15] Popov N. S., “Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions”, Differ. Equ., 51:3 (2015), 362–375 | DOI | DOI | Zbl
[16] Popov N. S., “On the solvability of boundary value problems for multidimensional parabolic equations of fourth order with nonlocal boundary condition of integral form”, Mathematical notes of NEFU, 23:1 (2016), 79–86 (In Russian) | Zbl
[17] Danyliuk I. M., Danyliuk A. O., “Neumann problem with the integro-differential operator in the boundary condition”, Math. Notes, 100:5 (2016), 687–694 | DOI | DOI | MR | Zbl
[18] Pulkina L. S., “Nonlocal problems for hyperbolic equations from the viewpoint of strongly regular boundary conditions”, Electron. J. Differential Equations, 2020:28 (2020), 1–20 https://ejde.math.txstate.edu/Volumes/2020/28/abstr.html
[19] Bažant Z. P., Jirásek M., “Nonlocal integral formulations of plasticity and damage: Survey of progress”, J. Eng. Mech., 128:1 (2002), 1119–1149 | DOI
[20] Sobolev S. L., Nekotorye primeneniia funktsional'nogo analiza v matematicheskoi fizike [Some Applications of Functional Analysis in Mathematical Physics], Nauka, Moscow, 1988, 334 pp. (In Russian)
[21] Ladyzhenskaya O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and Quasilinear Equations of Elliptic Type], Nauka, Moscow, 1973, 736 pp. (In Russian)
[22] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland, Amsterdam, 1978, 528 pp. | DOI | Zbl
[23] Trinogin V. A., Funktsional'nyi analiz [Functional Analysis], Nauka, Moscow, 1980, 495 pp. (In Russian)
[24] Liu S., Triggiani R., “An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement”, J. Inv. Ill-posed Problems, 2013, no. 21, 825–869 | DOI | Zbl