The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 423-434

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the solvability of some non-local analogs of the second initial-boundary value problem for multidimensional hyperbolic and parabolic equations of the second order. We prove the existence and uniqueness theorems of regular solutions (which have all Sobolev generalized derivatives that are summable with a square and are included in the equation). Some generalization and amplification of the obtained results are also given.
Keywords: hyperbolic equations, integral boundary conditions, nonlocal problems, integral conditions, regular solutions, uniqueness
Mots-clés : parabolic equations, existence.
@article{VSGTU_2021_25_3_a1,
     author = {A. I. Kozhanov and A. V. Dyuzheva},
     title = {The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {423--434},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - A. V. Dyuzheva
TI  - The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 423
EP  - 434
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/
LA  - ru
ID  - VSGTU_2021_25_3_a1
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A A. V. Dyuzheva
%T The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 423-434
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/
%G ru
%F VSGTU_2021_25_3_a1
A. I. Kozhanov; A. V. Dyuzheva. The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 423-434. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a1/