Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a8, author = {V. N. Orlov and O. A. Kovalchuk}, title = {Exact boundaries for the analytical approximate solution of~a~class of first-order nonlinear}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {381--392}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a8/} }
TY - JOUR AU - V. N. Orlov AU - O. A. Kovalchuk TI - Exact boundaries for the analytical approximate solution of~a~class of first-order nonlinear JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 381 EP - 392 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a8/ LA - en ID - VSGTU_2021_25_2_a8 ER -
%0 Journal Article %A V. N. Orlov %A O. A. Kovalchuk %T Exact boundaries for the analytical approximate solution of~a~class of first-order nonlinear %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 381-392 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a8/ %G en %F VSGTU_2021_25_2_a8
V. N. Orlov; O. A. Kovalchuk. Exact boundaries for the analytical approximate solution of~a~class of first-order nonlinear. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 381-392. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a8/
[1] Bacy R. S., “Optimal filtering for correlated noise”, J. Math. Analysis. Appl., 20:1 (1967), 1–8 | DOI | MR
[2] Kalman R. E., Bacy R. S., “Nev results in linear filtering and predication theory”, J. Basic Eng., 83 (1961), 95–108 | DOI | MR
[3] Graffi D., Nonlinear partial differential equations in physical problems, Research Notes in Mathematics, 42, Pitman Publ. Inc., Boston, London, Melbourne, 1980, v+105 pp. | MR | Zbl
[4] Samodurov A. A., Chudnovsky V. M., “A simple method for the determination of the delay time of a super radiant boson avalanche”, Dokl. Akad. Nauk BSSR, 29:1 (1985), 9–10 (In Russian) | MR | Zbl
[5] Ablowitz M. J., Ramani A., Segur H., “Nonlinear evolution equations and ordinary differential equations of Painlevè type”, Lett. Nuovo Cimento, 23:9 (1978), 333–338 | DOI | MR
[6] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of P-type. I”, J. Mat. Phys., 21:4 (1980), 715–721 | DOI | MR | Zbl
[7] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of P-type. II”, J. Mat. Phys., 21:9 (1980), 1006–1015 | DOI | MR | Zbl
[8] Airault H., “Rational solutions of Painlevè equations”, Stud. Appl. Math., 61:1 (1979), 31–53 | DOI | MR | Zbl
[9] Dawson S. P., Fortán C. E., “Analytical properties and numerical solutions of the derivative nonlinear Schrödinger equation”, J. Plasma Phys., 40:3 (1998), 585–602 | DOI
[10] Clarkson P., “Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations”, Comput. Methods Funct. Theory, 6:2 (2006), 329–401 | DOI | MR | Zbl
[11] Hill J. M., “Radial deflections of thin precompressed cylindrical rubber bush mountings”, Int. J. Solids Struct., 13:2 (1977), 93–104 | DOI | Zbl
[12] Axford R. A., Differential equations invariant under two-parameter Lie groups with applications to nonlinear diffusion, Technical Report LA-4517; Contract Number W-7405-ENG-36, Los alamos Scientific Lab., N. Mex., 39 pp. https://fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00387291.pdf
[13] Orlov V., Zheglova Y., “Mathematical modeling of building structures and nonlinear differential equations”, Int. J. Model. Simul. Sci. Comput., 11:3 (2020), 2050026 | DOI
[14] Orlov V. N., Kovalchuk O. A., “Mathematical problems of reliability assurance the building constructions”, E3S Web Conf., 97 (2019), 03031 | DOI
[15] Orlov V., Kovalchuk O., “An analytical solution with a given accuracy for a nonlinear mathematical model of a console-type construction”, J. Phys.: Conf. Ser., 1425 (2019), 012127 | DOI
[16] Erugin N. P., “Analytic theory of nonlinear systems of ordinary differential equations”, Prikl. Mat. Mekh., 16:4 (1952), 465–486 (In Russian) | MR | Zbl
[17] Yablonskii A. I., “Systems of differential equations whose critical singular points are fixed”, Differ. Uravn., 3:3 (1967), 468–478 (In Russian) | MR | Zbl
[18] Hill J. M., “Abel's differential equation”, Math. Sci., 7:2 (1982), 115–125 | MR | Zbl
[19] Umemura H., “Second proof of the irreducibility of the first differential equation of Painlevé”, Nagoya Math. J., 117 (1990), 125–171 | DOI | MR | Zbl
[20] Chichurin A. V., “Using of Mathematica system in the search of constructive methods of integrating the Abel's equation”, Proc. of Brest State Univ., 3:2 (2007), 24–38 (In Russian)
[21] Orlov V. N., Metod priblizhennogo resheniia pervogo, vtorogo differentsial'nykh uravnenii Penleve i Abelia [Method of Approximate Solution of Painlevé and Abelian First and Second Differential Equations], Arial, Simferopol', 2016, 183 pp. (In Russian)
[22] Orlov V. N., Fil'chakova V. P., “On a constructive method of construction of first and the second meromorphic Painlevé transcendents”, Symmetric and Analytic Methods in Mathematical Physics, Ser. Mathematical Physics, v. 19, Kiev, 1998, 155–165 (In Russian) | Zbl
[23] Orlov V. N., Guz' M. P., “Approximate solution of the cauchy one nonlinear differential equations in the neighborhood movable singularities”, Fundamental'nye i prikladnye problemy mekhaniki deformiruemogo tverdogo tela, matematicheskogo modelirovaniia i informatsionnykh tekhnologii [Fundamental and Applied Problems of Solid Mechanics, Mathematical Modeling, and Information Technologies], v. 2, Cheboksary, 2013, 36–46 (In Russian)
[24] Bakhvalov N. S., Chislennye metody [Numerical Methods], Nauka, Moscow, 1970, 632 pp. (In Russian) | MR