Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a7, author = {E. V. Solomin and A. A. Terekhin and A. S. Martyanov and A. A. Kovalyov and D. R. Ismagilov and A. A. Miroshnichenko and Yu. Yang and G. N. Ryavkin}, title = {Horizontal-axis wind turbine weathervane yaw differential error}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {365--380}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a7/} }
TY - JOUR AU - E. V. Solomin AU - A. A. Terekhin AU - A. S. Martyanov AU - A. A. Kovalyov AU - D. R. Ismagilov AU - A. A. Miroshnichenko AU - Yu. Yang AU - G. N. Ryavkin TI - Horizontal-axis wind turbine weathervane yaw differential error JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 365 EP - 380 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a7/ LA - ru ID - VSGTU_2021_25_2_a7 ER -
%0 Journal Article %A E. V. Solomin %A A. A. Terekhin %A A. S. Martyanov %A A. A. Kovalyov %A D. R. Ismagilov %A A. A. Miroshnichenko %A Yu. Yang %A G. N. Ryavkin %T Horizontal-axis wind turbine weathervane yaw differential error %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 365-380 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a7/ %G ru %F VSGTU_2021_25_2_a7
E. V. Solomin; A. A. Terekhin; A. S. Martyanov; A. A. Kovalyov; D. R. Ismagilov; A. A. Miroshnichenko; Yu. Yang; G. N. Ryavkin. Horizontal-axis wind turbine weathervane yaw differential error. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 365-380. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a7/
[1] Statistics — World Wind Energy Association, https://wwindea.org/information-2/information/
[2] Solomin E., Kirpichnikova I., Amerkhanov R., Korobatov D., Lutovats M., Martyanov A., “Wind-hydrogen standalone uninterrupted power supply plant for all-climate application”, Int. J. Hydrogen Energy, 44:7 (2019), 3433–3449 | DOI
[3] Wan S., Cheng L., Sheng X., “Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model”, Energies, 8:7 (2015), 6286–6301 | DOI
[4] Kirpichnikova I. M., Martyanov A. S., Solomin E. V., “Simulation of a generator for a wind-power unit”, Russ. Electr. Engin., 84:10 (2013), 577–580 | DOI
[5] Sirotkin E. A., Martyanov A. S., Solomin E. V., Kozlov S. V., “Emergency braking system for the wind turbine”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2016 | DOI
[6] Korobatov D. V., Sirotkin E. A., Troickiy A. O., Solomin E. V., “Wind turbine power plant control”, 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2016 | DOI
[7] Martyanov A. S., Martyanov N. A., Anikin A. S., “Comparative analysis of wind turbine control strategies”, Procedia Engineering, 129 (2015), 607–614 | DOI
[8] Chen F., Yang J., “Fuzzy PID controller used in yaw system of wind turbine”, 2009 3rd International Conference on Power Electronics Systems and Applications (PESA), 2009, 4 pp. https://ieeexplore.ieee.org/document/5228644
[9] van Dijk M. T., van Wingerden, J.-W., Ashuri T., Li Y., Rotea M. A., “Yaw-misalignment and its impact on wind turbine loads and wind farm power output”, J. Phys.: Conf. Ser., 753 (2016), 062013 | DOI
[10] MacMahon E., Stock A., Jamieson P., Leithead B., “Yaw control for 20MW offshore multi rotor system”, European Wind Energy Association Annual Event (EWEA 2015), Paris expo Porte de Versailles, 2015 https://strathprints.strath.ac.uk/59716/
[11] Zhang L., Yang Q., “A method for yaw error alignment of wind turbine based on LiDAR”, IEEE Access, 8 (2020), 25052–25059 | DOI
[12] Scholbrock A., Fleming P., Wright A., Slinger C., Medley J., Harris M., Field test results from lidar measured yaw control for improved yaw alignment with the NREL controls advanced research turbine, To be presented at the AIAA Science and Technology Forum and Exposition, 2015, 9 pp. https://www.nrel.gov/docs/fy15osti/63202.pdf
[13] Wind power plant Siemens: SWT–3.6–120, Technical documentation https://pdf.archiexpo.com/pdf/siemens-gamesa/swt-36-120/88089-134487.html
[14] Wilcox D. C., Turbulence Modeling for CFD, DCW Industries, California, 1998, 460 pp.
[15] Chung T. J., Computational Fluid Dynamics, Cambridge Univ. Press, London, 2010, xxii+1034 pp. | DOI | MR | Zbl
[16] Versteeg H., Malalasekra W., An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Prentice Hall, London, 2007, xiii+503 pp.
[17] Ferziger J. H., Peric M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002, xiv+426 pp. | DOI | MR | Zbl
[18] Hassid S., Poreh M., “A turbulent energy dissipation model for flows with drag reduction”, J. Fluids Eng., 100:1 (1978), 107–112 | DOI
[19] Wolfshtein M., “The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient”, Int. J. Heat Mass Transfer, 12:3 (1969), 301–318 | DOI
[20] Troshko A. A, Hassan Y. A., “A two-equation turbulence model of turbulent bubbly flows”, Int. J. Multiphase Flow, 27:11 (2001), 1965–2000 | DOI | Zbl
[21] Yakhot V, Orszag S. A., “Renormalization group analysis of turbulence. I. Basic theory”, J. Sci. Comput., 1:1 (1986), 3–51 | DOI | MR | Zbl
[22] Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale C. G., “Development of turbulence models for shear flows by a double expansion technique”, Phys. Fluids A, 4:7 (1992), 1510–1520 | DOI | MR | Zbl
[23] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI
[24] Roshko A., On the development of turbulent wakes from vortex streets, Technical Report no. 1191, National Advisory Committee for Aeronautics, Washington, D.C., 1954, 25 pp. https://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191 | MR
[25] Shlikhting G., Teoriia pogranichnogo sloia [Boundary Layer Theory], Nauka, Moscow, 1974, 637 pp. (In Russian)
[26] Strelets M., “Detached eddy simulation of massively separated flows”, 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001 | DOI