Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a5, author = {D. A. Shlyakhin and Zh. M. Kusaeva}, title = {Solution of the coupled nonstationary problem of~thermoelasticity for a rigidly fixed multilayer circular plate by the finite integral transformations method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {320--342}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a5/} }
TY - JOUR AU - D. A. Shlyakhin AU - Zh. M. Kusaeva TI - Solution of the coupled nonstationary problem of~thermoelasticity for a rigidly fixed multilayer circular plate by the finite integral transformations method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 320 EP - 342 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a5/ LA - ru ID - VSGTU_2021_25_2_a5 ER -
%0 Journal Article %A D. A. Shlyakhin %A Zh. M. Kusaeva %T Solution of the coupled nonstationary problem of~thermoelasticity for a rigidly fixed multilayer circular plate by the finite integral transformations method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 320-342 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a5/ %G ru %F VSGTU_2021_25_2_a5
D. A. Shlyakhin; Zh. M. Kusaeva. Solution of the coupled nonstationary problem of~thermoelasticity for a rigidly fixed multilayer circular plate by the finite integral transformations method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 320-342. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a5/
[1] Podstrigach Ya. S., Lomakin V. A., Kolyano Yu. M., Termouprugost' tel neodnorodnoi struktury [Thermoelasticity of Bodies with Inhomogeneous Structure], Nauka, Moscow, 1984, 368 pp. (In Russian)
[2] Boley B., Weiner J., Theory of Thermal Stresses, Wiley, New York, 1960, xvi+586 pp. | MR | Zbl
[3] Nowacki W., Dinamicheskie zadachi termouprugosti [Dynamic Problems of Thermoelasticity], Mir, Moscow, 1970, 256 pp. (In Russian)
[4] Kovalenko A. D., Vvedenie v termouprugost' [Introduction to Thermoelasticity], Nauk. dumka, Kiev, 1965, 202 pp. (In Russian) | MR
[5] Radayev Yu. N., Taranova M. V., “Wavenumbers of type III thermoelastic waves in a long waveguide under sidewall heat interchanging”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 2(23), 53–61 (In Russian) | DOI | Zbl
[6] Shashkov A. G., Bubnov V. A., Ianovsky S. Yu., Volnovye iavleniia teploprovodnosti. Sistemno-strukturnyi podkhod [Wave Phenomena of Heat Conductivity. System and Structural Approach], Editorial URSS, Moscow, 2004, 296 pp. (In Russian)
[7] Kudinov V. A., Kartashev E. M., Kalashnikov V. V., Analiticheskie resheniia zadach teplomassoperenosa i termouprugosti dlia mnogosloinykh konstruktsii [Analytical Solutions of Heat and Mass Transfer and Thermoelasticity Problems for Multilayer Structures], Vyssh. Shk., Moscow, 2005, 430 pp. (In Russian)
[8] Kudinov V. A., Klebleev R. M., Kuklova E. A., “Obtaining exact analytical solutions for nonstationary heat conduction problems using orthogonal methods”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 197–206 (In Russian) | DOI | Zbl
[9] Kartashov E. M., Analiticheskie metody v teploprovodnosti tverdykh tel [Analytical Methods in the Theory of the Thermal Conductivity of Solids], Vyssh. shk., Moscow, 1985, 480 pp. (In Russian)
[10] Filatov V. N., “Calculation of the temperature effects of flexible gently sloping shells supported by an orthogonal grid of edges”, Nelineinye zadachi rascheta tonkostennykh konstruktsii [Nonlinear Problems of Calculating Thin-Walled Structures], Saratov State Univ., Saratov, 1989, 108–110 (In Russian)
[11] Kudinov V. A., Kuznetsova A. E., Eremin A. V., Kotova E. V., “Analytical solutions of the quasistatic thermoelasticity task with variable physical properties of a medium”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 130–135 (In Russian) | DOI | Zbl
[12] Kobzar' V. N., Fil'shtinskii L. A., “The plane dynamic problem of coupled thermoelasticity”, J. Appl. Math. Mech., 72:5 (2008), 611–618 | DOI | Zbl
[13] Sargsyan S. H., “Mathematical model of micropolar thermo-elasticity of thin shells”, J. Thermal Stresses, 36:11 (2013), 1200–1216 | DOI | MR
[14] Zhornik A. I., Zhornik V. A., Savochka P. A., “On a problem of thermoelasticity for a solid cylinder”, Izv. YuFU. Tekhn. Nauki, 2012, no. 6(131), 63–69 (In Russian)
[15] Zhukov P. V., “Calculation of temperature fields and thermal stresses in thick-walled cylinder under impulse heat supply”, Vestnik IGEU, 2013, no. 3, 54–57 (In Russian)
[16] Makarova I. S., “The solution of uncoupled thermoelastic problem with first kind boundary conditions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(28), 191–195 (In Russian) | DOI | Zbl
[17] Harmatij H., Król M., Popovycz V., “Quasi-static problem of thermoelasticity for thermosensitive infinite circular cylinder of complex heat exchange”, Adv. Pure Math., 3:4 (2013), 430–437 | DOI
[18] Lee Z.-Y., “Coupled problem of thermoelasticity for multilayered spheres with time-dependent boundary conditions”, J. Mar. Sci. Tech., 12:2 (2004), 93–101 | DOI
[19] Lord H. W., Shulman Y., “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solids, 1967, 299–309 | DOI | Zbl
[20] Kovalev V. A., Radayev Yu. N., Semenov D. A., “Coupled dynamic problems of hyperbolic thermoelasticity”, Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009), 94–127 (In Russian) | DOI
[21] Kovalev V. A., Radayev Yu. N., Revinsky R. A., “Generalized cross-coupled type-III thermoelastic waves propagating via a waveguide under sidewall heat interchange”, Izv. Saratov Univ. Math. Mech. Inform., 11:1 (2011), 59–70 (In Russian) | DOI | MR
[22] Senitskii Yu. E., “Solution of coupled dynamic thermoelasticity problem for an infinite cylinder and sphere”, Sov. Appl. Mech., 18:6 (1982), 514–520 | DOI | Zbl
[23] Shlyakhin D. A., Kalmova M. A., “A coupled unsteady thermoelasticity problem for a long hollow cylinder”, Engineering Journal of Don, 2020, no. 3 (In Russian)
[24] Lychev S. A., “A coupled dynamic problem of thermoelasticity for a finite cylinder”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2003, no. 4(30), 112–124 (In Russian) | MR | Zbl
[25] Lychev S. A., Manzhirov A. V., Joubert S. V., “Closed solutions of boundary-value problems of coupled thermoelasticity”, Mech. Solids, 45:4 (2010), 610–623 | DOI
[26] Shlyakhin D. A., Dauletmuratova Zh. M., “Non-stationary coupled axisymmetric thermoelasticity problem for a rigidly fixed round plate”, PNRPU Mechanics Bulletin, 2019, no. 4, 191–200 (In Russian) | DOI
[27] Fu J. W., Chen Z. T., Qian L. F., “Coupled thermoelastic analysis of a multi-layered hollow cylinder based on the C–T theory and its application on functionally graded materials”, Compos. Struct., 131:1 (2015), 139–150 | DOI
[28] Vitucci G., Mishuris G., “Analysis of residual stresses in thermoelastic multilayer cylinders”, J. Eur. Ceram. Soc., 36:9 (2016), 2411–2417, arXiv: [cond-mat.mtrl-sci] 1511.06562 | DOI
[29] Shliakhin D. A., Dauletmuratova Zh. M., “Nonstationary axisymmetric thermoelasticity problem for a rigidly fixed circular plate”, Engineering Journal: Science and Innovation, 2018, no. 5(77), 1761, 18 pp. (In Russian) | DOI
[30] Sneddon I. N., Fourier Transforms, McGraw-Hill, New York, 1950, xii+542 pp. | MR | Zbl
[31] Senitskij Yu. È., “Biorthogonal multicomponent finite integral transformation and its application to boundary value problems of mechanics”, Russian Math. (Iz. VUZ), 40:8 (1996), 69–79 | MR | Zbl