Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a4, author = {A. A. Fukalov and A. V. Zaitsev and Yu. V. Sokolkin and Yu. V. Bayandin}, title = {The equilibrium state of a hollow transversally-isotropic thick-walled sphere, which is fixed on the external surfaces and is subject to a uniform internal lateral pressure and weight forces}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {303--319}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a4/} }
TY - JOUR AU - A. A. Fukalov AU - A. V. Zaitsev AU - Yu. V. Sokolkin AU - Yu. V. Bayandin TI - The equilibrium state of a hollow transversally-isotropic thick-walled sphere, which is fixed on the external surfaces and is subject to a uniform internal lateral pressure and weight forces JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 303 EP - 319 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a4/ LA - ru ID - VSGTU_2021_25_2_a4 ER -
%0 Journal Article %A A. A. Fukalov %A A. V. Zaitsev %A Yu. V. Sokolkin %A Yu. V. Bayandin %T The equilibrium state of a hollow transversally-isotropic thick-walled sphere, which is fixed on the external surfaces and is subject to a uniform internal lateral pressure and weight forces %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 303-319 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a4/ %G ru %F VSGTU_2021_25_2_a4
A. A. Fukalov; A. V. Zaitsev; Yu. V. Sokolkin; Yu. V. Bayandin. The equilibrium state of a hollow transversally-isotropic thick-walled sphere, which is fixed on the external surfaces and is subject to a uniform internal lateral pressure and weight forces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 303-319. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a4/
[1] Morse P. M., Feshbach H., Methods of theoretical physics, v. II, McGraw-Hill Book Co., New York, 1953 | Zbl
[2] Lurie A. I., Prostranstvennye zadachi teorii uprugosti [Spatial Problems of Theory of Elasticity], Gostekhizdat, Moscow, 1955, 491 pp. (In Russian)
[3] Zaitsev A. V., Fukalov A. A., “Elastic equilibrium state of thick-walled heavy transversely-isotropic spheres fixed on the interior surface”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 5(21), 85–95 (In Russian) | DOI | Zbl
[4] Fukalov A. A., Kutergin A. V., “Exact analytical solutions to problems of the equilibrium state of elastic anisotropic heavy central and axial-symmetric bodies and their applications”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4, 1831–1833 (In Russian)
[5] Zaitsev A. V., Sokolkin Y. V., Fukalov A. A., “Initial damage mechanisms of reinforced concrete monolithic supports for spherical mine workings located in sedimentary rock mass”, PNRPU Mechanics Bulletin, 2013, no. 4, 54–74 (In Russian) | DOI
[6] Zaitsev A. V., Sokolkin Yu. V., Fukalov A. A., “Equilibrium state of heavy anisotropic central-symmetric bodies which are fixed on the external surfaces”, Vestn. KRSU, 17:8 (2017), 13–17 (In Russian)
[7] Zaitsev A. V., Fukalov A. A., Sokolkin Y. V., “Initial strength analysis of anisotropic concrete supports for spherical mine workings in a sedimentary rock mass”, Physical and Mathematical Modeling of Earth and Environment Processes, Springer, Cham, 2019, 463–471 | DOI
[8] Kozhevnikova L. L., Kuznetsov G. B., Matveenko V. P., Shardakov I. N., “Analytical investigation of the elastic equilibrium of a hollow sphere rigidly fixed along the outer contour”, Strength Mater., 6:9 (1974), 1057–1061 | DOI
[9] Kuznetsov G. B., Uprugost', viazkouprugost' i dlitel'naia prochnost' tsilindricheskikh i sfericheskikh tel [Elasticity, Viscoelasticity and Long-term Strength of Cylindrical and Spherical Bodies], Nauka, Moscow, 1979, 112 pp. (In Russian)
[10] Saint-Venant B., “Mémoire sur les divers genres d'homogénéité semi-polaire ou cylindrique et sur les homogénéités polaires ou sphéri-coniques et sphériques”, J. Math. Pures Appl., 10 (1865), 297–349
[11] Lekhnitskii S. G., Theory of Elasticity of an Anisotropic Body, Mir Publ., Moscow, 1981, 430 pp. | Zbl
[12] Pobedrya B. E., Mekhanika kompozitsionnykh materialov [Mechanics of Composite Materials], Moscow State Univ., Moscow, 1984, 336 pp. (In Russian)
[13] Wildemann V. E., Sokolkin Yu. V., Tashkinov A. A., Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitsionnykh materialov [Mechanics of Inelastic Deformation and Failure of Composite Materials], Nauka, Moscow, 1997, 288 pp. (In Russian)