Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a2, author = {T. G. Ergashev}, title = {Potentials for a three-dimensional elliptic equation with one singular coefficient and their application}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {257--285}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a2/} }
TY - JOUR AU - T. G. Ergashev TI - Potentials for a three-dimensional elliptic equation with one singular coefficient and their application JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 257 EP - 285 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a2/ LA - ru ID - VSGTU_2021_25_2_a2 ER -
%0 Journal Article %A T. G. Ergashev %T Potentials for a three-dimensional elliptic equation with one singular coefficient and their application %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 257-285 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a2/ %G ru %F VSGTU_2021_25_2_a2
T. G. Ergashev. Potentials for a three-dimensional elliptic equation with one singular coefficient and their application. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 257-285. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a2/
[1] Kondrat'ev B. P., Teoriia potentsiala. Novye metody i zadachi s resheniiami [Theory of Potential. New Methods and Problems with Solutions], Mir, Moscow, 2007, 512 pp. (In Russian)
[2] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 48–57 | DOI | Zbl
[3] Ergashev T. G., “Fundamental solutions of the generalized Helmholtz equation with several singular coefficients and confluent hypergeometric functions of many variables”, Lobachevskii J. Math, 41:1 (2020), 15–26 | DOI | Zbl
[4] Hasanov A., “Fundamental solutions bi-axially symmetric Helmholtz equation”, Complex Var. Elliptic Equ., 52:8 (2007), 673–683 | DOI | Zbl
[5] Hasanov A., Karimov E. T., “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Appl. Math. Letters, 22:12 (2009), 1828–1832, arXiv: [math-ph] 0901.0468 | DOI | Zbl
[6] Urinov A. K., Karimov E. T., “On fundamental solutions for 3D singular elliptic equations with a parameter”, Appl. Math. Letters, 24:3 (2011), 314–319 | DOI | Zbl
[7] Ergashev T. G., “On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients”, Comp. Math. Appl., 77:1 (2019), 69–76, arXiv: [math.AP] 1804.04363 | DOI | Zbl
[8] Urinov A. K., Ergashev T. G., “Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55, 45–56 (In Russian) | DOI
[9] Mavlyaviev R. M., Garipov I. B., “Fundamental solution of multidimensional axisymmetric Helmholtz equation”, Complex Var. Elliptic Equ., 63:3 (2017), 287–296 | DOI
[10] Mavlyaviev R. M., “Construction of fundamental solutions to $B$-elliptic equations with minor terms”, Russian Math. (Iz. VUZ), 61:6 (2017), 60–65 | DOI | Zbl
[11] Urinov A. K., Karimov K. T., “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 665–683 (In Russian) | DOI | Zbl
[12] Shishkina E. L., “The Dirichlet problem for an elliptic singular equation”, Complex Var. Elliptic Equ., 65:7 (2020), 1210–1218 | DOI | Zbl
[13] Ergashev T. G., “Generalized Holmgren problem for an elliptic equation with several singular coefficients”, Differ. Equ., 56:7 (2020), 842–856 | DOI | DOI | Zbl
[14] Gellerstedt S., “Sur un problème aux limites pour l'équation $y^{2s}z_{xx}+z_{yy}=0$”, Ark. Mat. Astron. Fys. A, 25:10 (1935), 1–12 (In French) | Zbl
[15] Frankl F., “On the theory of the equation $y\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0$”, Izv. Akad. Nauk SSSR Ser. Mat., 10:2 (1946), 135–166 (In Russian) | MR | Zbl
[16] Pul'kin S. P., “Certain boundary value problems for equations $u_{xx}\pm u_{yy}+{p}{x^{-1}}u_x=0$”, Uch. Zap. Kuibyshev. Ped. Inst., 21 (1958), 3–55 (In Russian)
[17] Smirnov M. M., Vyrozhdaiushchiesia ellipticheskie i giperbolicheskie uravneniia [Degenerate Elliptic and Hyperbolic Equations], Nauka, Moscow, 1966, 292 pp. (In Russian)
[18] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10, arXiv: [math.AP] 0810.3979
[19] Berdyshev A. S., Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Var. Elliptic Equ., 65:2 (2020), 316–332 | DOI | Zbl
[20] Ergashev T. G., “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Math. J., 10:4 (2018), 111–121 | DOI | Zbl
[21] Ehrgashev T. G., “The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 50, 45–56 (In Russian) | DOI
[22] Mukhlisov F. G., Nigmetzyanova A. M., “Solution of boundary-value problems for a degenerating elliptic equation of the second kind by the method of potentials”, Russian Math. (Iz. VUZ), 53:8 (2009), 46–57 | DOI | MR | Zbl
[23] Ergashev T. G., “Potentials for three-dimensional singular equation and their application to the solving a mixed problem”, Lobachevskii J. Math., 41:6 (2020), 1067–1077 | DOI | Zbl
[24] Bateman H., Erdélyi A., Vysshie transtsendentnye funktsii [Higher Transcendental Functions], v. 1, Gipergeometricheskaia funktsiia. Funktsii Lezhandra [The Hypergeometric Function. Legendre Functions], Nauka, Moscow, 1973, 296 pp. (In Russian) | Zbl
[25] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, riadov i proizvedenii [Table of Integrals, Series, and Products], Fizmatlit, Moscow, 1962, 1100 pp. (In Russian)
[26] Sabitov K. B., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Fizmatlit, Moscow, 2013, 352 pp. (In Russian)