Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_2_a0, author = {A. N. Mironov and L. B. Mironova and J. O. Yakovleva}, title = {The {Riemann} method for equations with a~dominant partial derivative {(A~Review)}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {207--240}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a0/} }
TY - JOUR AU - A. N. Mironov AU - L. B. Mironova AU - J. O. Yakovleva TI - The Riemann method for equations with a~dominant partial derivative (A~Review) JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 207 EP - 240 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a0/ LA - ru ID - VSGTU_2021_25_2_a0 ER -
%0 Journal Article %A A. N. Mironov %A L. B. Mironova %A J. O. Yakovleva %T The Riemann method for equations with a~dominant partial derivative (A~Review) %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 207-240 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a0/ %G ru %F VSGTU_2021_25_2_a0
A. N. Mironov; L. B. Mironova; J. O. Yakovleva. The Riemann method for equations with a~dominant partial derivative (A~Review). Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 2, pp. 207-240. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_2_a0/
[1] Bianchi L., “Sulla estensione del metodo di Riemann alle equazioni lineari alle derivate parziali d'ordine superiore”, Rom. Acc. L. Rend. (5), 4:1 (1895), 89–99, 133–142 (In Italian) | Zbl
[2] Niccoletti O., “Sull'estensione del metodo di Riemann alle equazioni lineari a derivate parziali d'ordine superiore”, Rom. Acc. L. Rend. (5), 4:1 (1895), 330–337 (In Italian) | Zbl
[3] Bondarenko B. A., Bazisnye sistemy polinomial'nykh i kvazipolinomial'nykh reshenii uravnenii v chastnykh proizvodnykh [Basic Systems of Polynomial and Quasi-Polynomial Solutions of Partial Differential Equations], Fan, Tashkent, 1987, 146 pp. (In Russian) | Zbl
[4] Fage M. K., “Operator-analytic functions of one independent variable”, Tr. Mosk. Mat. Obs., 7 (1958), 227–268 (In Russian) | MR | Zbl
[5] Fage M. K., Nagnibida N. I., Problema ekvivalentnosti obyknovennykh lineinykh differentsial'nykh operatorov [The Equivalence Problem of Ordinary Linear Differential Operators], Nauka, Novosibirsk, 1987, 260 pp. (In Russian) | Zbl
[6] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of Mathematical Biology], Vyssh. Shk., Moscow, 1995, 301 pp. (In Russian) | Zbl
[7] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl
[8] Zhegalov V. I., Mironov A. N., Differentsial'nye uravneniia so starshimi chastnymi proizvodnymi [Differential Equations with Higher Partial Derivatives], Kazan Math. Society, Kazan, 2001, 226 pp. (In Russian)
[9] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniia s dominiruiushchei chastnoi proizvodnoi [Equations with Leading Partial Derivative], Kazan Univ., Kazan, 2014, 385 pp. (In Russian)
[10] Dzhokhadze O. M., “Laplace invariants for some classes of linear partial differential equations”, Differ. Equ., 40:1 (2004), 63–74 | DOI | MR | Zbl
[11] Vekua I. N., New methods for Solving Elliptic Equations, North-Holland Series in Applied Mathematics and Mechanics, 1, John Wiley Sons, Inc., Amsterdam, 1967, xii+358 pp. | Zbl | Zbl
[12] Barenblatt G. I., Zheltov Yu. P., Konina I. N., “On the basic concepts of filtration theory in fractured media”, Prikl. Mat. Mekh., 24:5 (1960), 58–73 (In Russian)
[13] Barenblatt G. I., Zheltov Yu. P., “Fundamental equations of filtration of homogeneous liquids in fissured rocks”, Sov. Phys., Dokl., 5 (1960), 522–525 | Zbl
[14] Hallaire M., “Le potentiel efficace de l'eau dans le sol en régime de dessèchement”, L'Eau et la Production Végétale, v. 9, INRA, Paris, 1964, 27–62
[15] Soldatov A. P., Shkhanukov M. Kh., “Boundary-value-problems with a Samarsky, A. A. general nonlocal condition for higher-order pseudoparabolic equations”, Dokl. Math., 36:3 (1988), 507–511 | MR | Zbl
[16] Serdyukova S. I., “Exotic asymptotics for a linear hyperbolic equation”, Dokl. Math., 67:2 (2003), 203–207 | MR | Zbl
[17] Mangeron D., “New methods for determining solution of mathematical models governing polyvibrating phenomena. I.”, Bul. Inst. Politeh. Iaşi, N. Ser., 14(18):1–2 (1968), 433–436 | Zbl
[18] Mangeron D., Oǧuztöreli M. N., “Darboux problem for a polyvibrating equation: Solution as an $F$-equation”, Proc. Natl. Acad. Sci. USA, 67:3 (1970), 1488–1492 | DOI | Zbl
[19] Kulaev R. C., Shabat A. B., “Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb R^3$”, Russian Math. (Iz. VUZ), 64:4 (2020), 35–43 | DOI | DOI | Zbl
[20] Bateman H., “Logarithmic solutions of Bianchi's equation”, Proc. Natl. Acad. Sci. USA, 19 (1933), 852–854 | DOI | Zbl
[21] Corduneanu A., “About the equation $u_{xyz}+cu=g$”, Bul. Inst. Politeh. Iaşi, Secţ. I, 20(24):1–2 (1974), 103–109 | Zbl
[22] Florian H., Püngel J., Wallner H., “Darstellungen von Riemannfunction for $\dfrac{\partial^{n} w}{\partial z_{1}\partial z_{2}\ldots\partial z_{n}}+ c(z_{1},\ldots ,z_{n})w=0$”, Ber. Math.-Stat. Sekt. Forschungszent. Graz, 204 (1983), 29 pp. (In German) | Zbl
[23] Lahaye E., “La méthode de Riemann appliquee à la résolution d'une categorie d'équations linéaires du troisieme ordre”, Acad. Roy. Belgique, Bull. Cl. Sci., V. Ser., 31 (1946), 479–494 (In French) | Zbl
[24] Colton D., “Pseudoparabolic equations in one space variable”, J. Differ. Equ., 12:3 (1972), 559–565 | DOI | Zbl
[25] Easwaran S., “On the positive definiteness of polyvibrating operators of Mangeron”, Acad. roy. Belgique, Bull. Cl. Sci., V. Ser., 59:7 (1973), 563–569 | Zbl
[26] Easwaran S., “Mangeron's polyvibrating operators and their eigenvalues”, Acad. roy. Belgique, Bull. Cl. Sci., V. Ser., 59:10 (1973), 1011–1015 | Zbl
[27] Oǧuztöreli M. N., “Boundary value problems for Mangeron's equations. I”, Bul. Inst. Politeh. Iaşi, Secţ. I, 19(23):3–4 (1973), 81–85 | Zbl
[28] Radochová V., “Die Lösing der partiellen Differentialgleihung $u_{xxtt}=A(t,x)u_{xx}+B(t,x)u_{tt}$ mit gewissen Nebenbedinungen”, Časopis pro pěstování matematiky, 98:4 (1973), 389–397 (In German) http://eudml.org/doc/21186 | Zbl
[29] Rundell W., Stecher M., “Remarks concerning the support of solutions of pseudoparabolic equation”, Proc. Amer. Math. Soc., 63:1 (1977), 77–81 | DOI | Zbl
[30] Rundell W., “The construction of solutions to pseudoparabolic equations in noncilindrical domains”, J. Differ. Equ., 27:3 (1978), 394–404 | DOI | Zbl
[31] Rundell W., “The Stefan problem for a pseudo-heat equation”, Indiana Univ. Math. J., 27:5 (1978), 739–750 https://www.jstor.org/stable/24892297 | DOI | Zbl
[32] Rundell W., “The uniqueness class for the Cauchy problem for pseudoparabolic equations”, Proc. Amer. Math. Soc., 76:2 (1979), 253–257 | DOI | Zbl
[33] Vogahova V. A., “A boundary value problem with A. M. Nakhushev's nonlocal condition for a pseudoparabolic equation of moisture transfer”, Differ. Uravn., 18:2 (1982), 280–285 (In Russian) | MR | Zbl
[34] Vogahova V. A., “A boundary value problem for a third-order equation with the nonlocal condition of A. M. Nakhushev”, Differ. Uravn., 19:1 (1983), 163–166 (In Russian) | MR | Zbl
[35] Shkhanukov M. Kh., “Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media”, Differ. Uravn., 18:4 (1982), 689–699 (In Russian) | MR | Zbl
[36] Shkhanukov M. Kh., “On a method of solving boundary value problems for third order equations”, Sov. Math., Dokl., 26:6 (1982), 272–275 | MR | Zbl
[37] Shkhanukov M. Kh., “On some boundary value problems for a third-order equation and extremal properties of its solutions”, Sov. Math., Dokl., 26:3 (1982), 675–678 | MR | Zbl
[38] Dzhokhadze O. M., “A Darboux-type problem for a third-order equation with dominating lowest terms”, Differ. Equ., 32:4 (1996), 524–537 | MR | Zbl
[39] Dzhokhadze O. M., “Influence of lower terms on the well-posedness of characteristics problems for third-order hyperbolic equations”, Math. Notes, 74:4 (2003), 491–501 | DOI | DOI | MR | Zbl
[40] Korzyuk V. I., “A boundary value problem for a third-order Mangeron equation”, Differ. Equ., 33:12 (1997), 1686–1694 | MR | Zbl
[41] Mamedov I. G., “A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation”, Comput. Math. Math. Phys., 49:1 (2009), 93–104 | DOI | MR | Zbl
[42] Mamedov I. G., “One Goursat problem in a Sobolev space”, Russian Math. (Iz. VUZ), 55:2 (2011), 46–55 | DOI | MR | Zbl
[43] Mamedov I. G., “Nonclassical analog of the Goursat problem for a three-dimensional equation with highest derivative”, Math. Notes, 96:2 (2014), 239–247 | DOI | DOI | MR | Zbl
[44] Bandaliyev R. A., Guliyev V. S., Mamedov I. G., Rustamov Y. I., “Optimal control problem for Bianchi equation in variable exponent Sobolev spaces”, J. Optim. Theory Appl., 180:1 (2019), 303–320 | DOI | Zbl
[45] Mamedov I. G., Mardanov M. D., Melikov T. K., Bandaliev R. A., “Well-posed solvability of the Neumann problem for a generalized mangeron equation with nonsmooth coefficients”, Differ. Equ., 55:10 (2019), 1362–1372 | DOI | Zbl
[46] Fage M. K., “The Cauchy problem for Bianchi's equation”, Mat. Sb. (N.S.), 45(87):3 (1958), 281–322 (In Russian) | MR | Zbl
[47] Zhegalov V. I., “A three-dimensional analog of the Goursat problem”, Neklassicheskie zadachi i uravneniia smeshannogo tipa [Nonclassical Equations and Equations of Mixed Type], Novosibirsk, 1990, 94–98 (In Russian) | Zbl
[48] Zhegalov V. I., Sevast'yanov V. A., “The Goursat problem in four-dimensional space”, Differ. Equ., 32:10 (1996), 1427–1428 | MR | Zbl
[49] Zhegalov V. I., Sevast'yanov V. A., The Goursat problem in $n$-dimensional space, Siberian Math. J., Deposited at VINITI, 08 Jule 1997, no 2290–B97, Novosibirsk, 1997, 4 pp. (In Russian)
[50] Zhegalov V. I., “On the three-dimensional Riemann function”, Siberian Math. J., 38:5 (1997), 929–934 | DOI | MR | Zbl
[51] Zhegalov V. I., Kotukhov M. P., “On integral equations for the Riemann function”, Russian Math. (Iz. VUZ), 42:1 (1998), 24–28 | MR | Zbl
[52] Zhegalov V. I., Utkina E. A., “Pseudoparabolic equation of the third order”, Russian Math. (Iz. VUZ), 43:10 (1999), 70–73 | MR | Zbl
[53] Zhegalov V. I., Utkina E. A., “The Goursat problem for a three-dimensional equation with a higher derivative”, Russian Math. (Iz. VUZ), 45:11 (2001), 74–78 | MR | Zbl
[54] Zhegalov V. I., Utkina E. A., “On a fourth-order partial differential equation with three independent variables”, Differ. Equ., 38:1 (2002), 99–103 | DOI | MR | Zbl
[55] Sevast'yanov V. A., “The Riemann method for a three-dimensional hyperbolic equation of third order”, Russian Math. (Iz. VUZ), 41:5 (1997), 66–70 | MR | Zbl
[56] Sevast'yanov V. A., “On a certain case of the Cauchy problem”, Differ. Equ., 34:12 (1998), 1716–1717 | MR | Zbl
[57] Utkina E. A., Differ. Equ., Deposited at VINITI, 28 June 1999, no 2059–B99, Minsk, 1999, 13 pp. (In Russian) | Zbl
[58] Mironov A. N., “On construction of the Riemann function for certain equation in $n$-dimensional space”, Russian Math. (Iz. VUZ), 43:7 (1999), 75–77 | MR | Zbl
[59] Mironov A. N., “The construction of the Riemann function for a fourth-order equation”, Differ. Equ., 37:12 (2001), 1787–1791 | DOI | MR | Zbl
[60] Utkina E. A., “On a differential equation with a higher-order partial derivative in three-dimensional space”, Differ. Equ., 41:5 (2005), 733–738 | DOI | MR | Zbl
[61] Utkina E. A., “On the general case of the Goursat problem”, Russian Math. (Iz. VUZ), 49:8 (2005), 53–58 | MR | Zbl
[62] Utkina E. A., “Increase of order of normal derivatives in the Goursat boundary value problem”, Russian Math. (Iz. VUZ), 51:4 (2007), 76–81 | DOI | MR | Zbl
[63] Mironov A. N., “On the Riemann method for equations with leading partial derivative in $\mathbb R^n$”, Trudy Matematicheskogo Tsentra Lobachevskogo, v. 19, Kazan Math. Society, Kazan, 2003, 154–155 (In Russian)
[64] Mironov A. N., “The Riemann method for equations with leading partial derivative in $\mathbb R^n$”, Siberian Math. J., 47:3 (2006), 481–490 | DOI | MR | Zbl
[65] A. N. Mironov, “On Riemann method for solving a mixed problem”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, no. 2(15), 27–32 (In Russian) | DOI | Zbl
[66] Zhegalov V. I., Mironov A. N., “A remark on spatial boundary value problems for hyperbolic equations”, Differ. Equ., 46:3 (2010), 367–374 | DOI | Zbl
[67] Mironov A. N., “Application of the riemann method to a factorized equation in an $n$-dimensional space”, Russian Math. (Iz. VUZ), 56:1 (2012), 48–54 | DOI | MR | Zbl
[68] Mironova L. B., “A problem for a factorized equation with a pseudoparabolic differential operator”, Russian Math. (Iz. VUZ), 64:8 (2020), 37–41 | DOI | DOI | Zbl
[69] Mironov A. N., “Riemann function formulation for two equations with leading partial derivatives”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 49–59 (In Russian) | DOI | Zbl
[70] Mironov A. N., “The Riemann function for one equation in an n-dimensional space”, Russian Math. (Iz. VUZ), 54:3 (2010), 19–23 | DOI | MR | Zbl
[71] Mironov A. N., “On the construction of the Riemann function for an equation with leading fifth partial derivative”, Differ. Equ., 46:2 (2010), 270–276 15330223 | DOI | Zbl
[72] Zhegalov V. I., “On solvability of hyperbolic equations in terms of special functions”, Neklassicheskie uravneniia matematicheskoi fiziki [Nonclassical Equations of Mathematical Physics], Novosibirsk, 2002, 73–79 (In Russian) | Zbl
[73] Zhegalov V. I., “The solvability of hyperbolic equations in quadratures”, Russian Math. (Iz. VUZ), 48:7 (2004), 44–49 | MR | Zbl
[74] Koshcheeva O. A., “Construction of the Riemann function for the Bianchi equation in an $n$-dimensional space”, Russian Math. (Iz. VUZ), 52:9 (2008), 35–40 | DOI | MR | Zbl
[75] Zhegalov V. I., “Solution of Volterra partial integral equations with the use of differential equations”, Differ. Equ., 44:7 (2008), 900–908 | DOI | Zbl
[76] Zhegalov V. I., Sarvarova I. M., “One approach to the solution of volterra integral equations with degenerate kernels”, Russian Math. (Iz. VUZ), 55:7 (2011), 23–29 | DOI | MR | Zbl
[77] Mironova L. B., “The Riemann method in $\mathbb R^n$ for a system with multiple characteristics”, Russian Math. (Iz. VUZ), 50:1 (2006), 32–37 | MR | Zbl
[78] Mironova L. B., “On characteristic problem for a system with double higher partial derivatives”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 31–37 (In Russian) | DOI
[79] Zhegalov V. I., Mironova L. B., “One system of equations with double major partial derivatives”, Russian Math. (Iz. VUZ), 51:3 (2007), 9–18 | DOI | MR | Zbl
[80] Sozontova E. A., “Characteristic problems with normal derivatives for hyperbolic systems”, Russian Math. (Iz. VUZ), 57:10 (2013), 37–47 | DOI | Zbl
[81] Mironova L. B., “Application of Riemann method to one system in three-dimensional space”, Russian Math. (Iz. VUZ), 63:6 (2019), 42–50 | DOI | DOI | Zbl
[82] Mironov A. N., “Darboux problem for the third-order Bianchi equation”, Math. Notes, 102:1 (2017), 53–59 | DOI | DOI | MR | Zbl
[83] Mironov A. N., “Darboux problem for the fourth-order Bianchi equation”, Differ. Equ., 57:3 (2021), 328–341 | DOI | DOI | Zbl
[84] Mironova L. B., “Boundary-value problems with data on characteristics for hyperbolic systems of equations”, Lobachevskii J. Math., 41:3 (2020), 400–406 | DOI | Zbl
[85] Volkodavov V. F., Nikolaev N. Ya., Bystrova O. K., Zakharov V. N., Funktsiia Rimana dlia nekotorykh differentsial'nykh uravnenii v $n$-mernom evklidovom prostranstve i ikh primeneniia [The Riemann Function for Some Differential Equations in $n$-Dimensional Euclidean Space and their Applications], Samara Univ., Samara, 1995, 76 pp. (In Russian)
[86] Volkodavov V. F., Zakharov V. N., Funktsiia Rimana dlia odnogo klassa differentsial'nykh uravnenii v trekhmernom evklidovom prostranstve i ee primeneniia [The Riemann Function for a Class of Differential Equations in Three-Dimensional Euclidean Space and its Applications], Samara State Pedagogical Univ., Samara, 1996, 51 pp. (In Russian)
[87] Andreev A. A., Construction of elementary solutions and solution of Cauchy problem for equations and hyperbolic systems of equations, Ph.D. Thesis (Phys. Math.) in the specialty 01.01.02 – Differential Equations, Kuibyshev, 1981, 100 pp. (In Russian)
[88] Bitsadze A. V., Some Classes of Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 4, Gordon Breach Science Publ., New York, 1988, xi+504 pp. | Zbl | Zbl
[89] Zorich V. A., Matematicheskii analiz [Mathematical Analysis]. Part I, Nauka, Moscow, 1981, 544 pp. (In Russian)
[90] Andreev A. A., Yakovleva J. O., “The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 3(24), 35–41 (In Russian) | DOI | Zbl
[91] Erdélyi A., Magnus W., Oberhettinger F. Tricomi F. G., Higher Transcendental Functions, v. I, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953, xxvi+302 pp. | Zbl
[92] Yakovleva Ju. O., Tarasenko A. V., “The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method”, Vestnik Samarskogo Universiteta. Estestvennonauchnaya Seriya [Vestnik of Samara University. Natural Science Series], 25:3 (2019), 33–38 (In Russian) | DOI | Zbl
[93] Holmgren E., “Sur les systèmes linéaires aux dérivées partielles du premier ordre”, Arkiv för mat., astr. och fys., 6:2 (1910), 1–10 (In French) | Zbl
[94] Burmistrov B. N., “Solution of the Cauchy problem by the Riemann method for a system of first order equations with a degeneracy on the boundary”, Tr. Semin. Kraev. Zadacham, 8, Kazan Univ., Kazan, 1971, 41–54 (In Russian) | MR | Zbl
[95] Chekmarev T. V., “Formulas for solution of the Goursat problem for a linear system of partial differential equations”, Differ. Uravn., 18:9 (1982), 1614–1622 (In Russian) | MR
[96] Chekmarev T. V., Sistemy uravnenii smeshannogo tipa [Systems of Mixed-Type Equations], Nizhny Novgorod State Techn. Univ., Nizhny Novgorod, 1995, 199 pp. (In Russian)
[97] Bitsadze A. V., “On structural properties of solutions of hyperbolic systems of partial differential equations of the first order”, Matem. Mod., 6:6 (1994), 22–31 (In Russian) | MR | Zbl
[98] Romanovskii R. K., “On Riemann matrices of the first and second kind”, Math. USSR-Sb., 55:2 (1986), 485–492 | DOI | MR | Zbl | Zbl
[99] Romanovskii R. K., “Exponentially splittable hyperbolic systems with two independent variables”, Math. USSR-Sb., 61:2 (1988), 335–349 | DOI | MR | Zbl | Zbl
[100] Vorob'eva E. V., Romanovskii R. K., “The method of characteristics for hyperbolic boundary value problems on the plane”, Siberian Math. J., 41:3 (2000), 433–441 | DOI | MR | Zbl
[101] Romanovskii R. K., Medvedev Y. A., “Optimal two-sided boundary control of heat transmission in a rod. Hyperbolic model.”, Russian Math. (Iz. VUZ), 60:6 (2016), 45–51 | DOI | Zbl