Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_1_a6, author = {A. L. Popov and S. A. Sadovskiy}, title = {On the conformity of theoretical models of longitudinal rod vibrations with ring defects experimental data}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {97--110}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a6/} }
TY - JOUR AU - A. L. Popov AU - S. A. Sadovskiy TI - On the conformity of theoretical models of longitudinal rod vibrations with ring defects experimental data JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 97 EP - 110 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a6/ LA - ru ID - VSGTU_2021_25_1_a6 ER -
%0 Journal Article %A A. L. Popov %A S. A. Sadovskiy %T On the conformity of theoretical models of longitudinal rod vibrations with ring defects experimental data %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 97-110 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a6/ %G ru %F VSGTU_2021_25_1_a6
A. L. Popov; S. A. Sadovskiy. On the conformity of theoretical models of longitudinal rod vibrations with ring defects experimental data. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a6/
[1] Strutt Lord Rayleigh J. W., The Theory of Sound (in two volumes), v. 1, Dover Publications, New York, 1877
[2] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, University Press, Cambridge, 1920 | Zbl
[3] Timoshenko S. P., Vibration Problems in Engineering, D. Van Nostrand, New York, 1955
[4] Bishop R. E. D., “Longitudinal waves in beams”, Aeronautical Journal, 3:4 (1952), 280–293 | DOI
[5] Rao S. S., Vibration of Continuous Systems, John Wiley Sons, New York, 2007
[6] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., Tenkam H. M., “Longitudinal vibrations of a Rayleigh–Bishop rod”, Dokl. Phys., 55 (2010), 609–614 | DOI | Zbl
[7] Marais J., Fedotov I., Shatalov M., “Longitudinal vibrations of a cylindrical rod based on the Rayleigh–Bishop theory”, Afrika Matematika, 26:7–8 (2015), 1549–1560 | DOI | Zbl
[8] Shenderov E. L., Volnovye zadachi gidroakustiki [Wave Problems of Hydroacoustic], Sudostroenie, Leningrad, 1972 (In Russian)
[9] Lebedev I. M., Shifrin E. I., “Solution of the inverse spectral problem for a rod weakened by transverse cracks by the Levenberg—Marquardt optimization algorithm”, Mech. Solids, 54:6 (2019), 857–872 | DOI | DOI | Zbl
[10] Kundt A., “Acoustic Experiments”, London Edinburgh Dublin Philos. Mag. J. Sci., 35:4 (1868), 41–48 | DOI
[11] Nerazrushaiushchii kontrol' i diagnostika [Non-destructive Testing and Diagnostics], Handbook, ed. V. V. Klyuev, Mashinostroenie, Moscow, 2003 (In Russian)
[12] Vibratsii v tekhnike [Vibrations in Engineering], Handbook in 6 volumes, v. 1, Kolebaniia lineinykh sistem [Oscillations of Linear Systems], ed. V. N. Chelomei, Mashinostroenie, Moscow, 1978 (In Russian)
[13] Prochnost', ustoichivost', kolebaniia [Strength, Stability, Vibration], Handbook in 3 volumes, v. 3, ed. I. A. Birger, Ya. G. Panovko, Mashinostroenie, Moscow, 1968 (In Russian)
[14] Handbook of Physical Quantities, ed. I. S. Grigoriev, E. Z. Meilikhov, CRC Press, Boca Raton, 1997
[15] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Spravochnik po soprotivleniiu materialov [Handbook on Strength of Materials], ed. G. S. Pisarenko, Nauk. Dumka, Kiev, 1988 (In Russian)
[16] Akulenko L. D., Nesterov S. V., High-Precision Methods in Eigenvalue Problems and Their Applications, CRC Press, New York, 2004