A new class of non-helical exact solutions of~the~Navier--Stokes equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 762-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a new class of exact solutions for the Navier–Stokes equations. These solutions describe unsteady three-dimensional in velocities and two-dimensional in coordinates for a viscous incompressible fluid flow. The procedure for constructing an exact solution generalizes Trkal's method proposed for studying screw flows. The new class of exact solutions allows to describe non-hecical flows (the velocity vector forms a nonzero angle with the vorticity vector) and fluid flows existing in a finite time.
Keywords: Navier-Stokes equation, Trkal's method, eigenfunctions of the Laplacian, non-helical flows, blow-up regimes.
Mots-clés : exact solution
@article{VSGTU_2020_24_4_a8,
     author = {V. P. Kovalev and E. Yu. Prosviryakov},
     title = {A new class of non-helical exact solutions {of~the~Navier--Stokes}  equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {762--768},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/}
}
TY  - JOUR
AU  - V. P. Kovalev
AU  - E. Yu. Prosviryakov
TI  - A new class of non-helical exact solutions of~the~Navier--Stokes  equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 762
EP  - 768
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/
LA  - en
ID  - VSGTU_2020_24_4_a8
ER  - 
%0 Journal Article
%A V. P. Kovalev
%A E. Yu. Prosviryakov
%T A new class of non-helical exact solutions of~the~Navier--Stokes  equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 762-768
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/
%G en
%F VSGTU_2020_24_4_a8
V. P. Kovalev; E. Yu. Prosviryakov. A new class of non-helical exact solutions of~the~Navier--Stokes  equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 762-768. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/

[1] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flows”, Fluid Dyn., 54:8 (2019), 1038–1042 | DOI | DOI

[2] Sizykh G. B., “Axisymmetric helical flows of viscous fluid”, Russ. Math., 63:2 (2019), 44–50 | DOI | DOI | MR | Zbl

[3] Sizykh G. B., “Closed vortex lines in fluid and gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 407–416 | DOI | Zbl

[4] Pukhnachev V. V., “Symmetries in Navier–Stokes equations”, Usp. Mekh., 4:1 (2006), 6–76 (In Russian)

[5] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI | MR

[6] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI | MR

[7] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR

[8] Meleshko S. V., Pukhnachev V. V., “One class of partially invariant solutions of the Navier–Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl

[9] Ludlow D. K., Clarkson P. A., Bassom A. P., “Similarity reductions and exact solutions for the two-dimensional incompressible Navier–Stokes equations”, Stud. Appl. Math., 103:3 (1999), 183–240 | DOI | MR | Zbl

[10] Meleshko S. V., “A particular class of partially invariant solutions of the Navier—Stokes equations”, Nonlinear Dynam., 36:1 (2004), 47–68 | DOI | MR | Zbl

[11] Drazin P. G., Riley N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge, Cambridge Univ., 2006, x+196 pp. | DOI | MR | Zbl

[12] Polyanin A. D., Aristov S. N., “A new method for constructing exact solutions to three dimensional Navier–Stokes and Euler equations”, Theor. Found. Chem. Eng., 45:6 (2011), 885–890 | DOI | MR

[13] Aristov S. N., Polyanin A. D., “New classes of exact solutions and some transformations of the Navier–Stokes equations”, Russ. J. Math. Phys., 17:1 (2010), 1–18 15324515 | DOI | MR | Zbl

[14] Prosviryakov E. Yu., “New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates”, Theor. Found. Chem. Eng., 53:1 (2019), 107–114 | DOI | DOI

[15] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI | DOI

[16] Trkal V., “A note on the hydrodynamics of viscous fluids”, Czech. J. Phys., 44:2 (1994), 97–106 | DOI | DOI | Zbl

[17] Prosviryakov E. Yu., “Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319–330 | DOI | MR

[18] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B., “Obtaining examples of exact solutions of the Navier–Stokes equations for helical flows by the method of summation of velocities”, Proc. of Moscow Institute of Physics and Technology, 9:1 (2017), 71–88 (In Russian)

[19] Berker R., Intégration des équations du mouvement d'un fluide visqueux incompressible, Handbuch der Physik, VIII/2, Springer, Berlin, 1963, 384 pp. (In French) | MR