Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_4_a8, author = {V. P. Kovalev and E. Yu. Prosviryakov}, title = {A new class of non-helical exact solutions {of~the~Navier--Stokes} equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {762--768}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/} }
TY - JOUR AU - V. P. Kovalev AU - E. Yu. Prosviryakov TI - A new class of non-helical exact solutions of~the~Navier--Stokes equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 762 EP - 768 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/ LA - en ID - VSGTU_2020_24_4_a8 ER -
%0 Journal Article %A V. P. Kovalev %A E. Yu. Prosviryakov %T A new class of non-helical exact solutions of~the~Navier--Stokes equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 762-768 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/ %G en %F VSGTU_2020_24_4_a8
V. P. Kovalev; E. Yu. Prosviryakov. A new class of non-helical exact solutions of~the~Navier--Stokes equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 762-768. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a8/
[1] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flows”, Fluid Dyn., 54:8 (2019), 1038–1042 | DOI | DOI
[2] Sizykh G. B., “Axisymmetric helical flows of viscous fluid”, Russ. Math., 63:2 (2019), 44–50 | DOI | DOI | MR | Zbl
[3] Sizykh G. B., “Closed vortex lines in fluid and gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 407–416 | DOI | Zbl
[4] Pukhnachev V. V., “Symmetries in Navier–Stokes equations”, Usp. Mekh., 4:1 (2006), 6–76 (In Russian)
[5] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI | MR
[6] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI | MR
[7] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR
[8] Meleshko S. V., Pukhnachev V. V., “One class of partially invariant solutions of the Navier–Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl
[9] Ludlow D. K., Clarkson P. A., Bassom A. P., “Similarity reductions and exact solutions for the two-dimensional incompressible Navier–Stokes equations”, Stud. Appl. Math., 103:3 (1999), 183–240 | DOI | MR | Zbl
[10] Meleshko S. V., “A particular class of partially invariant solutions of the Navier—Stokes equations”, Nonlinear Dynam., 36:1 (2004), 47–68 | DOI | MR | Zbl
[11] Drazin P. G., Riley N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge, Cambridge Univ., 2006, x+196 pp. | DOI | MR | Zbl
[12] Polyanin A. D., Aristov S. N., “A new method for constructing exact solutions to three dimensional Navier–Stokes and Euler equations”, Theor. Found. Chem. Eng., 45:6 (2011), 885–890 | DOI | MR
[13] Aristov S. N., Polyanin A. D., “New classes of exact solutions and some transformations of the Navier–Stokes equations”, Russ. J. Math. Phys., 17:1 (2010), 1–18 15324515 | DOI | MR | Zbl
[14] Prosviryakov E. Yu., “New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates”, Theor. Found. Chem. Eng., 53:1 (2019), 107–114 | DOI | DOI
[15] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI | DOI
[16] Trkal V., “A note on the hydrodynamics of viscous fluids”, Czech. J. Phys., 44:2 (1994), 97–106 | DOI | DOI | Zbl
[17] Prosviryakov E. Yu., “Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319–330 | DOI | MR
[18] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B., “Obtaining examples of exact solutions of the Navier–Stokes equations for helical flows by the method of summation of velocities”, Proc. of Moscow Institute of Physics and Technology, 9:1 (2017), 71–88 (In Russian)
[19] Berker R., Intégration des équations du mouvement d'un fluide visqueux incompressible, Handbuch der Physik, VIII/2, Springer, Berlin, 1963, 384 pp. (In French) | MR