Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_4_a7, author = {V. A. Kovalev and E. V. Murashkin and Yu. N. Radayev}, title = {On the {Neuber} theory of micropolar elasticity. {A~pseudotensor} formulation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {752--761}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a7/} }
TY - JOUR AU - V. A. Kovalev AU - E. V. Murashkin AU - Yu. N. Radayev TI - On the Neuber theory of micropolar elasticity. A~pseudotensor formulation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 752 EP - 761 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a7/ LA - en ID - VSGTU_2020_24_4_a7 ER -
%0 Journal Article %A V. A. Kovalev %A E. V. Murashkin %A Yu. N. Radayev %T On the Neuber theory of micropolar elasticity. A~pseudotensor formulation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 752-761 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a7/ %G en %F VSGTU_2020_24_4_a7
V. A. Kovalev; E. V. Murashkin; Yu. N. Radayev. On the Neuber theory of micropolar elasticity. A~pseudotensor formulation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 752-761. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a7/
[1] Maugin G. A., Non-classical continuum mechanics, Advanced Structured Materials, 51, Springer Verlag, Singapore, 2017, xvii+259 pp. | DOI | MR
[2] Chandrasekhar S., Liquid Crystals, Cambridge University Press, Cambridge, 1992, xvi+460 pp. | DOI
[3] Goriely A., The mathematics and mechanics of biological growth, Interdisciplinary Applied Mathematics book series, 45, Springer, New York, 2017, xxii+646 pp. | DOI | MR
[4] Cosserat E., Cosserat F., Théorie des corps déformables, A. Hermann et fils, Paris, 1909, 126 pp.
[5] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, v. III/1, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–902 | DOI | MR
[6] Aero E. L., Kuvshinskii E. V., “Fundamental equations of the theory of elastic media with rotationally interacting particles”, Soviet Physics–Solid State, 2:7 (1961), 1272–1281 | MR
[7] Mindlin R. D., Tiersten H. F., “Effects of couple-stresses in linear elasticity”, Arch. Rational Mech. Anal., 11:1 (1962), 415–448 | DOI | MR
[8] Mindlin R. D., “Influence of couple-stresses on stress concentrations”, Experimental Mechanics, 3:1 (1963), 1–7 | DOI
[9] Neuber H., “Über Probleme der Spannungskonzentration im Cosserat–Körper”, Acta Mechanica, 2:1 (1966), 48–69 | DOI | MR
[10] Neuber H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Applied Mechanics, eds. Görtler H., Springer, Berlin, Heidelberg, 1966, 153–158 | DOI
[11] Neuber H., “On the Effect of Stress Concentration in Cosserat Continua”, Mechanics of Generalized Continua, eds. Kröner E., Springer, Berlin, Heidelberg, 1968, 109–113 | DOI
[12] Dyszlewicz J., Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, 15, Springer, Berlin, Heidelberg, 2004, xv+345 pp. | DOI | MR
[13] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI
[14] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | MR | Zbl
[15] Veblen O., Thomas T. Y., “Extensions of Relative Tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373–377 | DOI | MR
[16] Veblen O., Thomas T. Y., “The geometry of paths”, Trans. Amer. Math. Soc., 25:4 (1923), 551–608 | DOI | MR
[17] Veblen O., Invariants of Quadratic Differential Forms, Cambridge University Press, Cambridge, 1927, 102 pp.
[18] Levi–Civita T., The Absolute Differential Calculus (Calculus of Tensors), Blackie Son Limited, London, Glasgow, 1927, 450 pp. | MR
[19] Shirokov P. A., Tensor Calculus: Tensor Algebra, ONTI GTTI, Moscow, Leningrad, 1934, 464 pp. (In Russian) | MR
[20] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, x+275 pp. | MR
[21] Thomas T. Y., Concepts from Tensor Analysis and Differential Geometry, Mathematics in Science and Engineering, 1, Academic Press, London, New York, 1961, v+119 pp. | MR
[22] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley Sons Inc, New York, 1964, xii+361 pp. https://archive.org/details/tensoranalysisth0000soko | MR
[23] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Gröningen, 1964, viii+418 pp. | MR | Zbl
[24] Synge J. L., Schild A., Tensor Calculus, v. 5, Courier Corporation, New York, 1978, 334 pp. | MR
[25] Das A., Tensors: The mathematics of Relativity Theory and Continuum Mechanics, Springer Science Business Media, New York, 2007, xii+290 pp. | DOI | MR
[26] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI
[27] Rosenfeld B. A., “Multidimensional Spaces”, A History of Non-Euclidean Geometry, Studies in the History of Mathematics and Physical Sciences, 12, Springer, New York, 1988, 247–279 | DOI | MR