Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_4_a4, author = {D. A. Shlyakhin and M. A. Kal'mova}, title = {The coupled non-stationary thermo-electro-elasticity problem for a~long hollow cylinder}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {677--691}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a4/} }
TY - JOUR AU - D. A. Shlyakhin AU - M. A. Kal'mova TI - The coupled non-stationary thermo-electro-elasticity problem for a~long hollow cylinder JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 677 EP - 691 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a4/ LA - ru ID - VSGTU_2020_24_4_a4 ER -
%0 Journal Article %A D. A. Shlyakhin %A M. A. Kal'mova %T The coupled non-stationary thermo-electro-elasticity problem for a~long hollow cylinder %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 677-691 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a4/ %G ru %F VSGTU_2020_24_4_a4
D. A. Shlyakhin; M. A. Kal'mova. The coupled non-stationary thermo-electro-elasticity problem for a~long hollow cylinder. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 677-691. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a4/
[1] Kozlov V. L., Optoelektronnye datchiki [Optoelectronic Sensors], Belarus. State Univ., Minsk, 2005, 116 pp. (In Russian)
[2] Kulchin Yu. N., Raspredelennye volokonno-opticheskie izmeritel'nye sistemy [Distributed Fiberoptic Measuring Systems], Fizmatlit, Moscow, 2001, 272 pp. (In Russian)
[3] Dmitriev S. A., Slepov N. N., Volokonno-opticheskaia tekhnika: sovremennoe sostoianie i novye perspektivy [Fiber-Optic Technology: Current Status and New Perspectives], Tekhnosfera, Moscow, 2010, 608 pp. (In Russian)
[4] Pan'kov A. A., “Resonant diagnostics of temperature distribution by the piezo-electro-luminescent fiber-optical sensor according to the solution of the Fredholm integral equation”, PNRPU Mechanics Bulletin, 2018, no. 2, 72–82 (In Russian) | DOI
[5] Abbas I. A., Youssef H. M., “Finite element analysis of two-temperature generalized magneto-thermoelasticity”, Arch. Appl. Mech., 79:10 (2009), 917–925 | DOI | Zbl
[6] He T., Tian X., Shen Y., “A generalized electromagneto-thermoelastic problem for an infinitely long solid cylinder”, Eur. J. Mech. a/Solids, 24:2 (2005), 349–359 | DOI | Zbl
[7] Abbas I. A., Zenkour A. M., “LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder”, Compos. Struct., 96 (2013), 89–96 | DOI
[8] Vatulyan A. O., Kiryutenko A. Yu., Nasedkin A. V., “Plane waves and fundamental solutions in linear thermoelectroelasticity”, J. Appl. Mech. Tech. Phys., 37:5 (1996), 727–733 | DOI | MR | Zbl
[9] Vatulyan A. O., Nesterov S. A., “The dynamic problem of thermoelectroelasticity for functionally graded layer”, Computational Continuum Mechanics, 10:2 (2017), 117–126 (In Russian) | DOI
[10] Kovalenko A. D., Vvedenie v termouprugost' [Introduction to Thermoelasticity], Nauk. dumka, Kiev, 1965, 204 pp. (In Russian) | MR
[11] Shlyakhin D. A., Dauletmuratova Zh. M., “Nonstationary axisymmetric thermoelasticity problem for a rigidly fixed circular plate”, Engineering Journal: Science and Innovation, 2018, no. 78, 1–18 (In Russian) | DOI
[12] Shlyakhin D. A., Dauletmuratova Zh. M., “Non-stationary coupled axisymmetric thermoelasticity problem for a rigidly fixed round plate”, PNRPU Mechanics Bulletin, 2019, no. 4, 191–200 (In Russian) | DOI
[13] Lychev S. A., Manzhirov A. V., Joubert S. V., “Closed solutions of boundary value problems of coupled thermoelasticity”, Mech. Solids, 45:4 (2010), 610–623 | DOI
[14] Radayev Yu. N., Taranova M. V., “Wavenumbers of type III thermoelastic waves in a long waveguide under sidewall heat interchanging”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 2(23), 53–61 (In Russian) | DOI | Zbl
[15] Grinchenko V. T., Ulitko A. F., Shul'ga N. A., Mekhanika sviazannykh polei v elementakh konstruktsii [Mechanics of Coupled Fields in Structural Elements], Nauk. dumka, Kiev, 1989, 279 pp. (In Russian)
[16] Senitskij Yu. E., “A biorthogonal multicomponent finite integral transformation and its application to boundary value problems in mechanics”, Russian Math. (Iz. VUZ), 40:8 (1996), 69–79 | MR | Zbl
[17] Kobzar' V. N., Fil'shtinskii L. A., “The plane dynamic problem of coupled thermoelasticity”, J. Appl. Math. Mech., 72:5 (2008), 611–618 | DOI | Zbl