A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 790-798.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, Beltrami flows or helical flows are flows in which the vorticity and velocity vectors are collinear, and the proportionality coefficient between these vectors is nonzero and is the same at all points of the flow. A method is proposed that allows using known helical solutions to obtain new helical solutions of the Euler equations for an incompressible fluid. Some of these new solutions cannot be obtained by the known methods of replicating solutions by shifting and rotating the coordinate system, symmetry, scaling, cyclic permutation of the velocity and coordinate components, vector summation. The new replication method is applied to such parametric families of exact solutions in which the proportionality coefficient between velocity and vorticity remains unchanged for different values of the parameter. The essence of the method is that for such families the derivative of the velocity with respect to the parameter is also the helical velocity. The sequential differentiation of the speed of a new solution with respect to a parameter gives an endless chain of new exact solutions.
Keywords: helical solutions of the Navier–Stokes equations, exact solutions of the Euler equations, Beltrami flows.
@article{VSGTU_2020_24_4_a11,
     author = {G. B. Sizykh},
     title = {A method for replicating exact solutions of the {Euler} equations for incompressible {Beltrami} flows},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {790--798},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a11/}
}
TY  - JOUR
AU  - G. B. Sizykh
TI  - A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 790
EP  - 798
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a11/
LA  - ru
ID  - VSGTU_2020_24_4_a11
ER  - 
%0 Journal Article
%A G. B. Sizykh
%T A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 790-798
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a11/
%G ru
%F VSGTU_2020_24_4_a11
G. B. Sizykh. A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 790-798. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a11/

[1] Prosviryakov E. Yu., “Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319–330 | DOI | MR

[2] Khorin A. N., Konyukhova A. A., “Couette flow of hot viscous gas”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 365–378 (In Russian) | DOI

[3] Kuzmina K., Marchevsky I., Ryatina E., “Exact solutions of boundary integral equation arising in vortex methods for incompressible flow simulation around elliptical and Zhukovsky airfoils”, J. Phys.: Conf. Ser., 1348 (2019), 012099 | DOI

[4] Golubkin V. N., Sizykh G. B., “Viscous Gas Flow between Vertical Walls”, Fluid Dyn., 53:2 (2018), 11–18 | DOI | DOI | MR

[5] Bosnyakov S. M., Mikhaylov S. V., Podaruev V. Yu., Troshin A. I., “Unsteady discontinuous Galerkin method of a high order of accuracy for modeling turbulent flows”, Math. Models Comput. Simul., 11:1 (2019), 22–34 | DOI | MR

[6] Dergachev S. A., Marchevsky I. K., Shcheglov G. A., “Flow simulation around 3D bodies by using Lagrangian vortex loops method with boundary condition satisfaction with respect to tangential velocity components”, Aerospace Science and Technology, 94 (2019), 105374 | DOI

[7] Trkal V., “A note on the hydrodynamics of viscous fluids”, Czech. J. Phys., 44 (1994), 97–106 ; Громека И. С., Собрание трудов, АН СССР, М., 1952, 76–148 с. | DOI | MR

[8] Gromeka I. S., Some cases of the motion of an incompressible fluid, Doctoral Dissertation, Kazan, 1881, 107 pp. (In Russian) ; Collected Works, Akad. Nauk SSSR, Moscow, 1952 | MR

[9] Beltrami E., “Considerazioni idrodinamiche”, Nuovo Cim., 25 (1889), 212–222 | DOI

[10] Vasil'ev O. F., Fundamentals of mechanics of screw and flow patterns, Akad. Nauk SSSR, Leningrad; Moscow, 1958, 144 pp. (In Russian)

[11] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B., “Obtaining examples of exact solutions of the Navier–Stokes equations for helical flows by the method of summation of velocities”, Proceedings of MIPT, 9:1 (2017), 71–88 (In Russian)

[12] Arnold V. I., “Sur la topologie des écoulements stationnaires des fluides parfaits”, C. R. Acad. Sci. Paris, 261 (1965), 17–20 | DOI | MR

[13] Childress S., “New solutions of the kinematic dynamo problem”, J. Math. Phys., 11:10 (1970), 3063–3076 | DOI | MR

[14] Berker R., “Intégration des équations du mouvement d'un fluide visqueux incompressible”, Encyclopedia of Physics, v. 8/2, Springer-Verlag, Berlin, 1963, 1–384 | DOI | MR