Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_4_a10, author = {I. Yu. Mironyuk and L. A. Usov}, title = {The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {780--789}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/} }
TY - JOUR AU - I. Yu. Mironyuk AU - L. A. Usov TI - The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 780 EP - 789 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/ LA - ru ID - VSGTU_2020_24_4_a10 ER -
%0 Journal Article %A I. Yu. Mironyuk %A L. A. Usov %T The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 780-789 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/ %G ru %F VSGTU_2020_24_4_a10
I. Yu. Mironyuk; L. A. Usov. The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 780-789. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/
[1] Aparinov A. A., Setukha A. V., Zhelannikov A. I., “Numerical simulation of separated flow over three-dimensional complex shape bodies with some vortex method”, AIP Conf. Proc., 1629 (2014), 69 | DOI
[2] Gutnikov V. A., Setukha A. V., “Solving the problems of buildings and structures aerodynamics with a vortex method”, IOP Conf. Ser.: Mater. Sci. Eng., 456 (2018), 012068 | DOI
[3] Shcheglov G. A., Dergachev S. A., “Vortex loops based method for subsonic aerodynamic loads calculation”, MATEC Web Conf., 221 (2018), 05004 | DOI
[4] Il'ichev A. T., Tomashpolskii V. Ja., “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI
[5] Il'ichev A. T., “Physical parameters of solitary wave packets in shallow basins under ice cover”, Theoret. and Math. Phys., 201:3 (2019), 1710–1722 | DOI | DOI | MR
[6] Marchenko A., Markov V., Taylor R., Influence of water on collisions of floating ice blocks, : The 29th International Ocean and Polar Engineering Conference, 16–21 June, Honolulu, Hawaii, USA, 2019, 8 pp. ISOPE-I-19-546
[7] Setukha A. V., “Lagrangian description of three-dimensional viscous flowsat large Reynolds numbers”, Comput. Math. and Math. Phys., 60:2 (2020), 302–326 | DOI | DOI
[8] Golubkin V. N., Sizykh G. B., “Viscous gas flow between vertical walls”, Fluid. Dyn., 53, Suppl. 2 (2018), 11–18 | DOI | DOI
[9] Khorin A. N., Konyukhova A. A., “Couette flow of hot viscous gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 365–378 (In Russian) | DOI
[10] Prosviryakov E. Yu., “Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319–330 | DOI
[11] Kuzmina K., Marchevsky I., Ryatina E., “Exact solutions of boundary integral equation arising in vortex methods for incompressible flow simulation around elliptical and Zhukovsky airfoils”, J. Phys.: Conf. Ser., 1348:1 (2019), 012099 | DOI
[12] Sizykh G. B., “Entropy value on the surface of a non-symmetric convex bow part of a body in the supersonic flow”, Fluid. Dyn., 54:7 (2019), 907–911 | DOI | DOI
[13] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966, 802 pp.
[14] Pontryagin L. S., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], Regular and Chaotic Dynamics, Izhevsk, 2001, 400 pp. (In Russian)
[15] Prim R., Truesdell C., “A derviation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI