The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 780-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, using the Euler equations we investigate the stagnation streamline in the general spatial case of a stationary incompressible fluid flow around a body with a smooth convex bow. It is assumed that in some neighborhood of the stagnation point everywhere, except for the stagnation point, the fluid velocity is nonzero; and that all streamlines on the surface of the body in this neighborhood start at the stagnation point. Here we prove the following three statements. 1) If on a certain segment of the vortex line the vorticity does not turn to zero, then the value of the fluid velocity in this segment is either identically equal to zero or nonzero at all points of the segment of the vortex line (velocity alternative). 2) The vorticity at the stagnation point is equal to zero. 3) On the stagnation streamline, the vorticity is collinear to the velocity, and the ratio of the vorticity to the velocity is the same at all points of the stagnation streamline (invariant of the stagnation streamline). On the basis of the obtained results, it is concluded that if in the free stream the velocity and vorticity are not collinear, a stationary flow around the body is impossible. However, the question of vorticity at the stagnation point in plane-parallel flows remains open, because the accepted assumption that the velocity of the fluid differs from zero in some neighborhood of the stagnation point everywhere, except for the stagnation point itself, excludes plane-parallel flows from consideration.
Mots-clés : Euler equations
Keywords: Helmholtz vortex theorems, Zorawski's criterion, stagnation streamline.
@article{VSGTU_2020_24_4_a10,
     author = {I. Yu. Mironyuk and L. A. Usov},
     title = {The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {780--789},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/}
}
TY  - JOUR
AU  - I. Yu. Mironyuk
AU  - L. A. Usov
TI  - The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 780
EP  - 789
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/
LA  - ru
ID  - VSGTU_2020_24_4_a10
ER  - 
%0 Journal Article
%A I. Yu. Mironyuk
%A L. A. Usov
%T The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 780-789
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/
%G ru
%F VSGTU_2020_24_4_a10
I. Yu. Mironyuk; L. A. Usov. The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 780-789. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a10/

[1] Aparinov A. A., Setukha A. V., Zhelannikov A. I., “Numerical simulation of separated flow over three-dimensional complex shape bodies with some vortex method”, AIP Conf. Proc., 1629 (2014), 69 | DOI

[2] Gutnikov V. A., Setukha A. V., “Solving the problems of buildings and structures aerodynamics with a vortex method”, IOP Conf. Ser.: Mater. Sci. Eng., 456 (2018), 012068 | DOI

[3] Shcheglov G. A., Dergachev S. A., “Vortex loops based method for subsonic aerodynamic loads calculation”, MATEC Web Conf., 221 (2018), 05004 | DOI

[4] Il'ichev A. T., Tomashpolskii V. Ja., “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI

[5] Il'ichev A. T., “Physical parameters of solitary wave packets in shallow basins under ice cover”, Theoret. and Math. Phys., 201:3 (2019), 1710–1722 | DOI | DOI | MR

[6] Marchenko A., Markov V., Taylor R., Influence of water on collisions of floating ice blocks, : The 29th International Ocean and Polar Engineering Conference, 16–21 June, Honolulu, Hawaii, USA, 2019, 8 pp. ISOPE-I-19-546

[7] Setukha A. V., “Lagrangian description of three-dimensional viscous flowsat large Reynolds numbers”, Comput. Math. and Math. Phys., 60:2 (2020), 302–326 | DOI | DOI

[8] Golubkin V. N., Sizykh G. B., “Viscous gas flow between vertical walls”, Fluid. Dyn., 53, Suppl. 2 (2018), 11–18 | DOI | DOI

[9] Khorin A. N., Konyukhova A. A., “Couette flow of hot viscous gas”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 365–378 (In Russian) | DOI

[10] Prosviryakov E. Yu., “Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 319–330 | DOI

[11] Kuzmina K., Marchevsky I., Ryatina E., “Exact solutions of boundary integral equation arising in vortex methods for incompressible flow simulation around elliptical and Zhukovsky airfoils”, J. Phys.: Conf. Ser., 1348:1 (2019), 012099 | DOI

[12] Sizykh G. B., “Entropy value on the surface of a non-symmetric convex bow part of a body in the supersonic flow”, Fluid. Dyn., 54:7 (2019), 907–911 | DOI | DOI

[13] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966, 802 pp.

[14] Pontryagin L. S., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], Regular and Chaotic Dynamics, Izhevsk, 2001, 400 pp. (In Russian)

[15] Prim R., Truesdell C., “A derviation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI