Existence of solutions to quasilinear elliptic equations in the Musielak--Orlicz--Sobolev spaces for unbounded domains
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 621-643.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the existence of solutions of the Dirichlet problem for nonlinear elliptic equations of the second order in unbounded domains. Restrictions on the structure of quasilinear equations are formulated in terms of a special class of convex functions (generalized $N$-functions). Namely, nonlinearities are determined by the Musilak–Orlicz functions such that the complementaries functions obeys the condition $ \Delta_2 $. The corresponding Musielak–Orlicz–Sobolev space does not have to be reflexive. This fact is a significant problem, since the theorem for pseudomonotone operators is not applicable here. For the class of equations under consideration, the proof of the existence theorem is based on an abstract theorem for additional systems. An important tool which allowed to generalize available results on the existence of solutions of the considered equations for bounded domains to the case of unbounded domains is an embedding theorem for Musielak–Orlicz–Sobolev spaces. Thus, in this paper, we find conditions on the structure of quasilinear equations in terms of the Musielak–Orlicz functions sufficient for the solvability of the Dirichlet problem in unbounded domains. In addition, we provide examples of equations which demonstrate that the class of nonlinearities considered in the paper is wider than non-power nonlinearities and variable exponent nonlinearities.
Keywords: Musielak–Orlicz–Sobolev spaces, Dirichlet problem, non-reflective space, unbounded domain.
Mots-clés : existence solution
@article{VSGTU_2020_24_4_a1,
     author = {L. M. Kozhevnikova and A. P. Kashnikova},
     title = {Existence of  solutions to  quasilinear elliptic equations in the  {Musielak--Orlicz--Sobolev} spaces for unbounded domains},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {621--643},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. P. Kashnikova
TI  - Existence of  solutions to  quasilinear elliptic equations in the  Musielak--Orlicz--Sobolev spaces for unbounded domains
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 621
EP  - 643
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/
LA  - ru
ID  - VSGTU_2020_24_4_a1
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. P. Kashnikova
%T Existence of  solutions to  quasilinear elliptic equations in the  Musielak--Orlicz--Sobolev spaces for unbounded domains
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 621-643
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/
%G ru
%F VSGTU_2020_24_4_a1
L. M. Kozhevnikova; A. P. Kashnikova. Existence of  solutions to  quasilinear elliptic equations in the  Musielak--Orlicz--Sobolev spaces for unbounded domains. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 621-643. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/

[1] Browder F. E., “Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains”, Proc. Nati. Acad. Sci. USA, 74:7 (1977), 2659–2661 | DOI

[2] Kozhevnikova L. M., Kamalеtdinov A. Sh., “Existence of solutions of anisotropic elliptic equations with variable exponents of nonlinearity in unbounded domains”, Vestn. Volgogr. Gos. Univ., Ser. 1. Math. Phys., 2016, no. 5(36), 29–41 (In Russian) | DOI

[3] Kozhevnikova L. M., Kamaletdinov A. Sh., “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl

[4] Mihăilescu M., Rădulescu V., “Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces”, Ann. Inst. Fourier, Grenoble, 58:6 (2008), 2087–2111, arXiv: [math.AP] 0712.2185 | DOI

[5] Fan X., Guan C.-X., “Uniform convexity of Musielak–Orlicz–Sobolev spaces and applications”, Nonlinear Anal., 73:1 (2010), 163–175 | DOI

[6] Benkirane A., Sidi El Vally M., “An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 57–75 | DOI

[7] Sidi El Vally M., “Strongly nonlinear elliptic problems in Musielak–Orlicz–Sobolev spaces”, Adv. Dyn. Syst. Appl., 8:1 (2013), 115–124

[8] Fan X., “Differential equations of divergence form in Musielak–Sobolev spaces and a sub-supersolution method”, J. Math. Anal. Appl., 386:2 (2012), 593–604 | DOI

[9] Dong G., Fang X., “Differential equations of divergence form in separable Musielak–Orlicz–Sobolev spaces”, Bound. Value Probl., 2016 (2016), 106 | DOI

[10] Chlebicka I., “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces”, Nonlinear Anal., 175 (2018), 1–27 | DOI

[11] Diening L., Harjulehto P., Hästö P., Ru{z}i{c}ka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Berlin, 2011, ix+509 pp. | DOI

[12] Musielak J., Orlicz Spaces and Modular Space, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983, vi+226 pp. | DOI

[13] Krasnosel'skii M. A., Rutickii Ja. B., Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961, xi+249 pp.

[14] Gossez J.P., “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190:1 (1974), 163–205 | DOI

[15] Dunford N., Schwartz J. T., Linear Operators. I: General Theory, Pure and Applied Mathematics, 7, Interscience Publ., New York, 1958, xiv+858 pp.

[16] Gossez J.-P., Mustonen V., “Variational inequalities in Orlicz–Sobolev spaces”, Nonlinear Anal., 11:3 (1987), 379–392 | DOI