Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_4_a1, author = {L. M. Kozhevnikova and A. P. Kashnikova}, title = {Existence of solutions to quasilinear elliptic equations in the {Musielak--Orlicz--Sobolev} spaces for unbounded domains}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {621--643}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/} }
TY - JOUR AU - L. M. Kozhevnikova AU - A. P. Kashnikova TI - Existence of solutions to quasilinear elliptic equations in the Musielak--Orlicz--Sobolev spaces for unbounded domains JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 621 EP - 643 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/ LA - ru ID - VSGTU_2020_24_4_a1 ER -
%0 Journal Article %A L. M. Kozhevnikova %A A. P. Kashnikova %T Existence of solutions to quasilinear elliptic equations in the Musielak--Orlicz--Sobolev spaces for unbounded domains %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 621-643 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/ %G ru %F VSGTU_2020_24_4_a1
L. M. Kozhevnikova; A. P. Kashnikova. Existence of solutions to quasilinear elliptic equations in the Musielak--Orlicz--Sobolev spaces for unbounded domains. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 621-643. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a1/
[1] Browder F. E., “Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains”, Proc. Nati. Acad. Sci. USA, 74:7 (1977), 2659–2661 | DOI
[2] Kozhevnikova L. M., Kamalеtdinov A. Sh., “Existence of solutions of anisotropic elliptic equations with variable exponents of nonlinearity in unbounded domains”, Vestn. Volgogr. Gos. Univ., Ser. 1. Math. Phys., 2016, no. 5(36), 29–41 (In Russian) | DOI
[3] Kozhevnikova L. M., Kamaletdinov A. Sh., “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl
[4] Mihăilescu M., Rădulescu V., “Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces”, Ann. Inst. Fourier, Grenoble, 58:6 (2008), 2087–2111, arXiv: [math.AP] 0712.2185 | DOI
[5] Fan X., Guan C.-X., “Uniform convexity of Musielak–Orlicz–Sobolev spaces and applications”, Nonlinear Anal., 73:1 (2010), 163–175 | DOI
[6] Benkirane A., Sidi El Vally M., “An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 57–75 | DOI
[7] Sidi El Vally M., “Strongly nonlinear elliptic problems in Musielak–Orlicz–Sobolev spaces”, Adv. Dyn. Syst. Appl., 8:1 (2013), 115–124
[8] Fan X., “Differential equations of divergence form in Musielak–Sobolev spaces and a sub-supersolution method”, J. Math. Anal. Appl., 386:2 (2012), 593–604 | DOI
[9] Dong G., Fang X., “Differential equations of divergence form in separable Musielak–Orlicz–Sobolev spaces”, Bound. Value Probl., 2016 (2016), 106 | DOI
[10] Chlebicka I., “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces”, Nonlinear Anal., 175 (2018), 1–27 | DOI
[11] Diening L., Harjulehto P., Hästö P., Ru{z}i{c}ka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Berlin, 2011, ix+509 pp. | DOI
[12] Musielak J., Orlicz Spaces and Modular Space, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983, vi+226 pp. | DOI
[13] Krasnosel'skii M. A., Rutickii Ja. B., Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961, xi+249 pp.
[14] Gossez J.P., “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190:1 (1974), 163–205 | DOI
[15] Dunford N., Schwartz J. T., Linear Operators. I: General Theory, Pure and Applied Mathematics, 7, Interscience Publ., New York, 1958, xiv+858 pp.
[16] Gossez J.-P., Mustonen V., “Variational inequalities in Orlicz–Sobolev spaces”, Nonlinear Anal., 11:3 (1987), 379–392 | DOI