Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a9, author = {V. V. Struzhanov and A. V. Korkin}, title = {On the solution of one problem of deformation of rod systems that does not satisfy the {Hadamard} conditions by the simple iteration method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {595--603}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a9/} }
TY - JOUR AU - V. V. Struzhanov AU - A. V. Korkin TI - On the solution of one problem of deformation of rod systems that does not satisfy the Hadamard conditions by the simple iteration method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 595 EP - 603 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a9/ LA - ru ID - VSGTU_2020_24_3_a9 ER -
%0 Journal Article %A V. V. Struzhanov %A A. V. Korkin %T On the solution of one problem of deformation of rod systems that does not satisfy the Hadamard conditions by the simple iteration method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 595-603 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a9/ %G ru %F VSGTU_2020_24_3_a9
V. V. Struzhanov; A. V. Korkin. On the solution of one problem of deformation of rod systems that does not satisfy the Hadamard conditions by the simple iteration method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 595-603. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a9/
[1] Arsenin V. Ya., Nauka, Moscow, 1974, 431 pp. (In Russian)
[2] Struzhanov V. V., Mironov V. I., Deformatsionnoe razuprochnenie materiala v elementakh konstruktsii [Deformational Softening of Material in Structural Elements], UrO RAN, Ekaterinburg, 1995, 192 pp. (In Russian)
[3] Vil'deman V. E., Chausov N. G., “Conditions of deformation failure for special configuration stretched sample”, Zavod. Lab., Diagn. Mater., 73:10 (2007), 55–59 (In Russian)
[4] Vil'deman V. E., Tretyakov M. P., “Material testing by plotting total deformation curves”, J. Mach. Manuf. Reliab., 42:2 (2013), 166–170 | DOI
[5] Andreeva E. A., “Solution of one-dimensional softening materials plasticity problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 152–160 (In Russian) | DOI | Zbl
[6] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical Methods], Nauka, Moscow, 1973, 432 pp. (In Russian)
[7] Kalitkin N. N., Gol'tsov N. A., Vvedenie v chislennyi analiz [Introduction to Numerical Analysis], Moscow State Forest Univ., Moscow, 2003, 143 pp.
[8] Kalitkin N. N., Chislennye metody [Numerical Methods], Nauka, Moscow, 1978, 512 pp. (In Russian)
[9] Verzhbitsky V. M., Chislennye metody. Lineinaia algebra i nelineinye uravneniia [Numerical Methods. Linear Algebra and Nonlinear Equations], Vyssh. shk., Moscow, 2000, 266 pp. (In Russian)
[10] Struzhanov V. V., Korkin A. V., “Regarding stretching process stability of one bar system with softening elements”, Herald of the Ural State University of Railway Transport, no. 3(31), 4–17 (In Russian) | DOI
[11] Pars L. A., A treatise on analytical dynamics, Heinemann Educational Books, London, 1965, xxi+641 pp. | MR | Zbl
[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1989, 624 pp. (In Russian) | MR | Zbl
[13] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Course of Differential and Integral Calculus], v. 2, Fizmatlit, Moscow, 1959, 808 pp. (In Russian)