Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a8, author = {G. N. Belostochny and O. A. Myltcina}, title = {Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {583--594}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/} }
TY - JOUR AU - G. N. Belostochny AU - O. A. Myltcina TI - Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 583 EP - 594 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/ LA - ru ID - VSGTU_2020_24_3_a8 ER -
%0 Journal Article %A G. N. Belostochny %A O. A. Myltcina %T Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 583-594 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/ %G ru %F VSGTU_2020_24_3_a8
G. N. Belostochny; O. A. Myltcina. Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 583-594. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/
[1] Zhilin P. A., “The linear theory of ribbed shells”, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1970, no. 4, 150–162 (In Russian)
[2] Belostochnyi G. N., Ul'yanova O. I., “Continuum model for a composition of shells of revolution with thermosensitive thickness”, Mech. Solids, 46:2 (2011), 184–191 | DOI
[3] Belostochnyi G. N., Rusina E. A., “Shells and geometrically irregular plates with heat-sensitive thickness”, Dokl. Ross. Akad. Estestv. Nauk, 1999, no. 1, 28–37 (In Russian)
[4] Abovskii N.P., “On variational equations for flexible ribbed and other structurally anisotropic flat shells”, Teoriia plastin i obolochek [Theory of Plates and Shells], 1971, 4–7, Nauka, Moscow (In Russian)
[5] Nazarov A. A., Osnovy teorii i metody rascheta pologikh obolochek [Fundamentals of the Theory and Methods of Calculating Shallow Shells], Stroiizdat, Leningrad, Moscow, 1966 (In Russian)
[6] Antosik P., Mikusiński J., Sikorski R., Theory of Distributions: The Sequential Approach, Elsevier Scientific, Amsterdam, 1973
[7] Rassudov V. M., “Deformations of gently sloping shells supported by stiffeners”, Uchen. Zap. Sarat. Un-ta, 52 (1956), 51–91 (In Russian)
[8] Gekkeler I.V., Statika uprugogo tela [Statics of an Elastic Body], Gostekhizdat, Leningrad, Moscow, 1934 (In Russian)
[9] Ogibalov P. M., Voprosy dinamiki i ustoichivosti obolochek [Problems in Dynamics and Stability of Shells], Moscow State Univ., Moscow, 1963 (In Russian)
[10] Ogibalov P. M., Gribanov V. F., Termoustoichivost' plastin i obolochek [Thermal Stability of Plates and Shells], Moscow State Univ., Moscow, 1958 (In Russian)
[11] Belostochny G. N., “Analytical methods for determination of closed integrals of singular differential equations of thermoelasticity of geometrically irregular shells”, Dokl. Akad. Voen. Nauk, 1999, no. 1, 14–25 (In Russian)
[12] Belostochny G. N., Rusina E. A., “Dynamic thermal stability of transversal-isotropic plates under the action of periodic loads”, Sovremennye problemy nelineinoi mekhaniki konstruktsii, vzaimodeistvuiushchikh s agressivnymi sredami [Modern problems of nonlinear mechanics of structures interacting with aggressive media], Saratov, 2000, 175–180 (In Russian)
[13] Belostochny G. N., Tsvetkova O. A., “Geometrically irregular plates under the action of a time-periodic temperature field”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred [Problems of strength of structural elements under the influence of loads and working media], Saratov State Techn. Univ., Saratov, 2002, 64–72 (In Russian)
[14] Myltcina O. A., Polienko A. V., Belostochny G. N., “Dynamic stability of heated geometrically irregular plates on the basis of the Reisner model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 760–772 (In Russian) | DOI | Zbl
[15] Stoker J. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley Classics Library, Wiley, New York, 1992 | Zbl
[16] Bolotin V. V., The dynamic stability of elastic systems, Holden-Day Series in Mathematical Physics, Holden-Day, San Francisco, London, Amsterdam, 1964
[17] Timoshenko S. P., Vibration Problems in Engineering, Constable, London, 1937
[18] Filippov A. P., Metody rascheta sooruzhenii na kolebaniia [Methods for Calculating Structures for Vibrations], Gosstroiizdat, Moscow, Leningrad, 1941 (In Russian)
[19] Timoshenko S. P., Ustoichivost' uprugikh sistem [Stability of Elastic Systems], OGIZ–Gostekhizd, Moscow, Leningrad, 1946 (In Russian)
[20] Ambartsumian S. A., Teoriia anizotropnykh plastin [Theory of Anisotropic Plates], Nauka, Moscow, 1967 (In Russian) | Zbl