Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 583-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of a Love type model, a geometrically irregular isotropic shallow cylindrical shell is considered, based on a strict continuum-shell-rib model. It is assumed that the geometrically irregular shell is heated to a constant temperature $\theta_0$, two opposite edges are exposed to a tangential load periodic in time coordinate, the amplitude and frequency of which are known ($p(t)=p_0 \cos \vartheta t$). The problem of determining the regions of dynamic instability of a thermoelastic system is reduced to considering a singular system of three differential equations of dynamic thermal stability of a geometrically irregular shell in displacements containing a term with tangential forces in the Brian form. These forces arising in the shell during its heating are preliminarily determined on the basis of closed solutions of the singular system of differential equations of the momentless thermoelasticity of the geometrically irregular shell. The specific initialized system of equations is transformed to the Mathieu equations, which are written in terms of the classical athermal theory of smooth plates containing corrections for geometric parameters — curvature, relative height of the reinforcing elements, their number, and temperature. The first three regions of dynamic instability of a geometrically irregular shell are determined. A quantitative analysis of the influence of the geometric parameters of the elastic system and temperature on the configuration of the regions of dynamic instability and the magnitude of the excitation coefficient is carried out.
Keywords: singularity, thermal stability, dynamics, geometric irregularity, continuum model, closed integrals, instability domains.
Mots-clés : Mathieu equations
@article{VSGTU_2020_24_3_a8,
     author = {G. N. Belostochny and O. A. Myltcina},
     title = {Dynamic thermal stability of heated geometrically irregular  cylindrical shell under the influence of a periodic temporal coordinate load},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {583--594},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/}
}
TY  - JOUR
AU  - G. N. Belostochny
AU  - O. A. Myltcina
TI  - Dynamic thermal stability of heated geometrically irregular  cylindrical shell under the influence of a periodic temporal coordinate load
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 583
EP  - 594
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/
LA  - ru
ID  - VSGTU_2020_24_3_a8
ER  - 
%0 Journal Article
%A G. N. Belostochny
%A O. A. Myltcina
%T Dynamic thermal stability of heated geometrically irregular  cylindrical shell under the influence of a periodic temporal coordinate load
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 583-594
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/
%G ru
%F VSGTU_2020_24_3_a8
G. N. Belostochny; O. A. Myltcina. Dynamic thermal stability of heated geometrically irregular  cylindrical shell under the influence of a periodic temporal coordinate load. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 583-594. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a8/

[1] Zhilin P. A., “The linear theory of ribbed shells”, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1970, no. 4, 150–162 (In Russian)

[2] Belostochnyi G. N., Ul'yanova O. I., “Continuum model for a composition of shells of revolution with thermosensitive thickness”, Mech. Solids, 46:2 (2011), 184–191 | DOI

[3] Belostochnyi G. N., Rusina E. A., “Shells and geometrically irregular plates with heat-sensitive thickness”, Dokl. Ross. Akad. Estestv. Nauk, 1999, no. 1, 28–37 (In Russian)

[4] Abovskii N.P., “On variational equations for flexible ribbed and other structurally anisotropic flat shells”, Teoriia plastin i obolochek [Theory of Plates and Shells], 1971, 4–7, Nauka, Moscow (In Russian)

[5] Nazarov A. A., Osnovy teorii i metody rascheta pologikh obolochek [Fundamentals of the Theory and Methods of Calculating Shallow Shells], Stroiizdat, Leningrad, Moscow, 1966 (In Russian)

[6] Antosik P., Mikusiński J., Sikorski R., Theory of Distributions: The Sequential Approach, Elsevier Scientific, Amsterdam, 1973

[7] Rassudov V. M., “Deformations of gently sloping shells supported by stiffeners”, Uchen. Zap. Sarat. Un-ta, 52 (1956), 51–91 (In Russian)

[8] Gekkeler I.V., Statika uprugogo tela [Statics of an Elastic Body], Gostekhizdat, Leningrad, Moscow, 1934 (In Russian)

[9] Ogibalov P. M., Voprosy dinamiki i ustoichivosti obolochek [Problems in Dynamics and Stability of Shells], Moscow State Univ., Moscow, 1963 (In Russian)

[10] Ogibalov P. M., Gribanov V. F., Termoustoichivost' plastin i obolochek [Thermal Stability of Plates and Shells], Moscow State Univ., Moscow, 1958 (In Russian)

[11] Belostochny G. N., “Analytical methods for determination of closed integrals of singular differential equations of thermoelasticity of geometrically irregular shells”, Dokl. Akad. Voen. Nauk, 1999, no. 1, 14–25 (In Russian)

[12] Belostochny G. N., Rusina E. A., “Dynamic thermal stability of transversal-isotropic plates under the action of periodic loads”, Sovremennye problemy nelineinoi mekhaniki konstruktsii, vzaimodeistvuiushchikh s agressivnymi sredami [Modern problems of nonlinear mechanics of structures interacting with aggressive media], Saratov, 2000, 175–180 (In Russian)

[13] Belostochny G. N., Tsvetkova O. A., “Geometrically irregular plates under the action of a time-periodic temperature field”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred [Problems of strength of structural elements under the influence of loads and working media], Saratov State Techn. Univ., Saratov, 2002, 64–72 (In Russian)

[14] Myltcina O. A., Polienko A. V., Belostochny G. N., “Dynamic stability of heated geometrically irregular plates on the basis of the Reisner model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 760–772 (In Russian) | DOI | Zbl

[15] Stoker J. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley Classics Library, Wiley, New York, 1992 | Zbl

[16] Bolotin V. V., The dynamic stability of elastic systems, Holden-Day Series in Mathematical Physics, Holden-Day, San Francisco, London, Amsterdam, 1964

[17] Timoshenko S. P., Vibration Problems in Engineering, Constable, London, 1937

[18] Filippov A. P., Metody rascheta sooruzhenii na kolebaniia [Methods for Calculating Structures for Vibrations], Gosstroiizdat, Moscow, Leningrad, 1941 (In Russian)

[19] Timoshenko S. P., Ustoichivost' uprugikh sistem [Stability of Elastic Systems], OGIZ–Gostekhizd, Moscow, Leningrad, 1946 (In Russian)

[20] Ambartsumian S. A., Teoriia anizotropnykh plastin [Theory of Anisotropic Plates], Nauka, Moscow, 1967 (In Russian) | Zbl