Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a6, author = {E. V. Vorozhtsov and V. P. Shapeev}, title = {A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {542--573}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a6/} }
TY - JOUR AU - E. V. Vorozhtsov AU - V. P. Shapeev TI - A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 542 EP - 573 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a6/ LA - ru ID - VSGTU_2020_24_3_a6 ER -
%0 Journal Article %A E. V. Vorozhtsov %A V. P. Shapeev %T A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 542-573 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a6/ %G ru %F VSGTU_2020_24_3_a6
E. V. Vorozhtsov; V. P. Shapeev. A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 542-573. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a6/
[1] Ferziger J. H., Perić M., Street R. L., Computational Methods for Fluid Dynamics, Springer, Cham, 2020, xviii+596 pp. | DOI | MR
[2] Reddy J. N., Gartling D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, 2010, xxiii+501 pp. | DOI | MR | Zbl
[3] Moukalled F., Mangani L., Darwish M., The Finite Volume Method in Computational Fluid Dynamics, Springer, Heidelberg, 2016, xxiii+791 pp. | DOI | MR | Zbl
[4] Jiang B. N., The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer, Berlin, 1998, xvi+418 pp. | DOI | MR
[5] Kim N., Reddy J. N., “A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids”, Int. J. Numer. Meth. Fluids, 82:9 (2016), 541–566 | DOI | MR
[6] Ranjan R., Chronopoulos A. T., Feng Y., “Computational algorithms for solving spectral/hp stabilized incompressible flow problems”, J. Math. Res., 8:4 (2016), 21–39 | DOI
[7] Ramšak M., Škerget L., “A subdomain boundary element method for high-Reynolds laminar flow using stream function–vorticity formulation”, Int. J. Numer. Meth. Fluids, 46:8 (2004), 815–847 | DOI | Zbl
[8] Zhang X., An X., Chen C. S., “Local RBFs based collocation methods for unsteady Navier–Stokes equations”, Adv. Appl. Math. Mech., 7:4 (2015), 430–440 | DOI | MR
[9] Plyasunova A. V., Sleptsov A. G., “Collocation-grid method for solving nonlinear parabolic equations on moving grids”, Model. Mekh., 18:4 (1987), 116–137 (In Russian) | MR | Zbl
[10] Isaev V. I., Shapeev V. P., “High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations”, Comput. Math. Math. Phys., 50:10 (2010), 1670–1681 | DOI | MR | Zbl
[11] Isaev V. I., Shapeev V. P., “High-order accurate collocations and least squares method for solving the Navier–Stokes equations”, Dokl. Math., 85:4 (2012), 71–74 | DOI | MR | Zbl
[12] Shapeev V.P., Vorozhtsov E.V., “Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier–Stokes equations”, Computer Algebra in Scientific Computing. CASC 2012, Lecture Notes in Computer Science, 7442, Springer, Heidelberg, 2012, 321–333 | DOI | MR | Zbl
[13] Shapeev V. P., Vorozhtsov E. V., “Symbolic-numerical optimization and realization of the method of collocations and least residuals for solving the Navier–Stokes equations”, Computer Algebra in Scientific Computing. CASC 2016, Lecture Notes in Computer Science, 9890, Springer, Cham, 2016, 473–488 | DOI | MR | Zbl
[14] Isaev V. I., Shapeev V. P., Eremin S. A., “Investigation of the properties of the method of collocations and least squares for solving the boundary-value problems for the Poisson equation and the Navier–Stokes equations”, Vychisl. Tekhnol., 12:3 (2007), 1–19 (In Russian) | Zbl
[15] Vorozhtsov E. V., Shapeev V. P., “On the efficiency of combining different methods for acceleration of iterations at the solution of PDEs by the method of collocations and least residuals”, Appl. Math. Comput., 363 (2019), 1–19 | DOI | MR
[16] Fedorenko R. P., “The speed of convergence of one iterative process”, U.S.S.R. Comput. Math. Math. Phys., 4:3 (1964), 227–235 | DOI | MR | MR | Zbl
[17] Krylov A. N., “On the numerical solution of the equation, which determines in technological questions the frequencies of small oscillations of material systems”, Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII Ser., 1931, no. 4, 491–539 (In Russian) | Zbl
[18] Saad Y., Numerical Methods for Large Eigenvalue Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2011, xvi+276 pp. | DOI | MR | Zbl
[19] Kirkpatrick M. P., Armfield S. W., Kent J. H., “A representation of curved boundaries for the solution of the Navier–Stokes equations on staggered three-dimensional Cartesian grid”, J. Comput. Phys., 184:1 (2003), 1–36 | DOI | Zbl
[20] Abbassi H., Turki S., Nasrallah Ben S., “Channel flow past bluff body: outlet boundary condition, vortex shedding and effects of buyoancy”, Comput. Mech., 28:1 (2002), 10–16 | DOI | Zbl
[21] Erturk E., “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solution”, Comput. Fluids, 37:6 (2008), 633–655 | DOI | Zbl
[22] Shapeev V. P., Vorozhtsov E. V., Isaev V. I., Idimeshev S. V., “The method of collocations and least residuals for three-dimensional Navier-Stokes equations”, Num. Meth. Prog., 14:3 (2013), 306–322 (In Russian)
[23] Demmel J. W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 1997, viii+418 pp. | DOI | MR | Zbl
[24] Saad Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2003, xvi+447 pp. | DOI | MR | Zbl
[25] Wesseling P., An Introduction to Multigrid Methods, John Wiley Sons, Chichester, 1992, vi+284 pp. | MR | Zbl
[26] Chiu P. H., Sheu T. W. H., Lin R. K., “An effective explicit pressure gradient scheme implemented in the two-level non-staggered grids for incompressible Navier–Stokes equations”, J. Comput. Phys., 227:8 (2008), 4018–4037 | DOI | MR | Zbl
[27] Shapeev V. P., Vorozhtsov E. V., “CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier–Stokes equations”, Computer Algebra in Scientific Computing. CASC 2014, Lecture Notes in Computer Science, 8136, Springer, Heidelberg, 2013, 381–392 | DOI | MR | Zbl
[28] Gartling D. K., “A test problem for outflow boundary conditions — flow over a backward-facing step”, Int. J. Numer. Methods Fluids, 11:7 (1990), 953–967 | DOI
[29] Voevodin V. V., Vychislitel'nye osnovy lineinoi algebry [Computational Fundamentals of Linear Algebra], Nauka, Moscow, 1977, 303 pp. (In Russian)
[30] Martynenko S. I., “Improvement of numerical algorithms for solving the Navier–Stokes equations on structured grids”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2008, no. 2, 78–94 (In Russian)
[31] Rouizi Y., Favennec Y., Ventura J., Petit D., “Numerical model reduction of 2D steady incompressible laminar flows: Application on the flow over a backward-facing step”, J. Comput. Phys., 228:6 (2009), 2239–2255 | DOI | MR | Zbl
[32] Parsani M., Ghorbaniasl G., Lacor C., “Analysis of the implicit LU-SGS algorithm for 3rd- and 4th-order spectral volume scheme for solving the steady Navier–Stokes equations”, J. Comput. Phys., 230:19 (2011), 7073–7085 | DOI | MR | Zbl
[33] Roberts N. V., Demkowicz L., Moser R., “A discontinuous Petrov–Galerkin methodology for adaptive solutions to the incompressible Navier–Stokes equations”, J. Comput. Phys., 301 (2015), 456–483 | DOI | MR | Zbl
[34] Bustamante C. A., Power H., Florez W. F., “A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations”, Comput. Math. Appl., 65:12 (2013), 1939–1955 | DOI | MR | Zbl
[35] Shapeev A. V., Lin P., “An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows”, SIAM J. Sci. Comput., 31:3 (2009), 1874–1900 | DOI | MR | Zbl
[36] Ghia U., Ghia K. N., Shin C. T., “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comput. Phys., 48:3 (1982), 387–411 | DOI | MR | Zbl
[37] Botella O., Peyret R., “Benchmark spectral results on the lid-driven cavity flow”, Comput. Fluids, 27:4 (1998), 421–433 | DOI | MR | Zbl
[38] Erturk E., Corke T. C., Gökçöl C., “Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers”, Int. J. Numer. Methods Fluids, 48:7 (2005), 747–774 | DOI | Zbl
[39] Vuorinen V., Larmi M., Schlatter P., Fuchs L., Boersma B. J., “A low-dissipative, scale-slective discretization scheme for the Navier–Stokes equations”, Comput. Fluids, 70 (2012), 195–205 | DOI | MR | Zbl
[40] Lim R., Sheen D., “Nonconforming finite element method applied to the driven cavity flow”, Comm. Comput. Phys., 21:4 (2017), 1012–1038, arXiv: [math.NA] 1502.04217 | DOI | MR | Zbl