Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a4, author = {A. P. Yankovskii}, title = {Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {506--527}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a4/} }
TY - JOUR AU - A. P. Yankovskii TI - Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 506 EP - 527 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a4/ LA - ru ID - VSGTU_2020_24_3_a4 ER -
%0 Journal Article %A A. P. Yankovskii %T Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 506-527 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a4/ %G ru %F VSGTU_2020_24_3_a4
A. P. Yankovskii. Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 506-527. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a4/
[1] Qatu M. S., Sullivan R. W., Wang W., “Recent research advances on the dynamic analysis of composite shells: 2000–2009”, Compos. Struct., 93:1 (2010), 14–31 | DOI
[2] Kazanci Z., “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses”, Int. J. Nonlin. Mech., 46:5 (2011), 807–817 | DOI
[3] Gill S. K., Gupta M., Satsangi P., “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites”, Front. Mech. Eng., 8:2 (2013), 187–200 | DOI
[4] Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Amsterdam, Elsever, 2013, xii+412 pp. | DOI
[5] Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A., Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells], Fizmatlit, Moscow, 2014, 408 pp. (In Russian)
[6] Gibson R. F., Principles of Composite Material Mechanics, CRC Press, Boca Raton, 2016 | DOI
[7] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie zhestkikh polimernykh materialov [The Strength of Polymeric and Composite Materials], Zinatne, Riga, 1972, 500 pp. (In Russian)
[8] Ambartsumyan S. A., Theory of Anisotropic Plates: Strength, Stability, and Vibration, v. 2, Progress in Materials Science Series, Technomic, Stamford, 1970, 248 pp.
[9] Bogdanovich A. E., Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Non-Linear Dynamic Problems for Composite Cylindrical Shells], Zinatne, Riga, 1987, 295 pp. (In Russian)
[10] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics of Composite Structures], Nizhni Novgorod State Univ., Nizhni Novgorod, 2002, 400 pp. (In Russian)
[11] Reddy J. N., Mechanics of laminated composite plates. Theory and analysis, CRC Press, Boca Raton, 2004, xxiii+831 pp. | DOI
[12] Kaledin V. O., Aul'chenko S. M., Mitkevich A. B., et. al., Modelirovanie statiki i dinamiki obolochechnykh konstruktsii iz kompozitsionnykh materialov [Modeling Statics and Dynamics of Shell Structures Made of Composite Materials], Fizmatlit, Moscow, 2014, 196 pp. (In Russian)
[13] Yankovskii A. P., “Modeling of dynamic elastic-plastic behavior of flexible reinforced shallow shells”, Composite Materials Constructions, 2018, no. 2, 3–14 (In Russian)
[14] Zhigun I. G., Dushin M. I., Polyakov V. A., Yakushin V. A., “Composites reinforced with a system of three straight mutually orthogonal fibers. 2. Experimental study”, Polymer Mechanics, 9:6 (1973), 895–900 | DOI
[15] Tarnopol'skii Yu. M., Zhigun I. G., Polyakov V. A., Prostranstvenno-armirovannye kompozitsionnye materialy [Spatially Reinforced Composite Materials], Mashinostroenie, Moscow, 1987, 224 pp. (In Russian)
[16] Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., “A new generation of 3D woven fabric preforms and composites”, Sampe J., 37:3 (2001), 3–17
[17] Schuster J., Heider D., Sharp K., Glowania M., “Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites”, Mech. Compos. Mater., 45:2 (2009), 241–254 | DOI
[18] Tarnopol'skii Y. M., Polyakov V. A., Zhigun I. G., “Composite materials reinforced with a system of three straight, mutually orthogonal fibers. 1. Calculation of the elastic characteristics”, Polymer Mechanics, 9:5 (1973), 754–759 | DOI
[19] Kregers A. F. Teters G. A., “Structural model of deformation of anisotropic three-dimensionally reinforced composites”, Mech. Compos. Mater., 18:1 (1982), 10–17 | DOI
[20] Yankovskii A. P., “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model”, Mech. Compos. Mater., 46:5 (2010), 451–460 | DOI
[21] Yankovskii A. P., “Elastic-plastic deformation of flexible plates with spatial reinforcement structures”, J. Appl. Mech. Tech. Phys., 59:6 (2018), 1058–1066 | DOI | DOI
[22] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Vibropogloshchaiushchie svoistva konstruktsionnykh materialov: Spravochnik [Vibration-Absorbing Properties of Structural Materials: A Handbook], Naukova dumka, Kiev, 1971, 375 pp. (In Russian)
[23] Freudenthal A. M., Geiringer H., “The Mathematical Theories of the Inelastic Continuum”, Elasticity and Plasticity. Encyclopedia of Physics, ed. S. Flügge, Springer, Berlin, Heidelberg, 1958, 229–433 | DOI
[24] Reissner E., “On transverse vibrations of thin, shallow elastic shells”, Quart. Appl. Math., 13:2 (1955), 169–176 | DOI
[25] Houlston R., DesRochers C. G., “Nonlinear structural response of ship panels subjected to air blast loading”, Comput. Struct., 26:1–2 (1987), 1–15 | DOI
[26] Zeinkiewicz O. C., Taylor R. L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000, 707 pp.
[27] Dekker K., Verwer J. G., Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North‐Holland, Amsterdam, New York, 1984, x+308 pp.
[28] Khazhinskii G. M., Modeli deformirovaniia i razrusheniia metallov [Deformation and Long-Term Strength of Metals], Nauchnyi Mir, Moscow, 2011, 231 pp. (In Russian)
[29] Yankovskii A. P., “Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates”, Computational Continuum Mechanics, 9:3 (2016), 279–297 (In Russian) | DOI
[30] Handbook of composites, ed. G. Lubin, Van Nostrand Reinhold Company Inc., New York, 1982, 786 pp.
[31] Kompozitsionnye materialy [Composite Materials], ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp. (In Russian)
[1] Qatu M. S., Sullivan R. W., Wang W., “Recent research advances on the dynamic analysis of composite shells: 2000–2009”, Compos. Struct., 93:1 (2010), 14–31 | DOI
[2] Kazanci Z., “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses”, Int. J. Nonlin. Mech., 46:5 (2011), 807–817 | DOI
[3] Gill S. K., Gupta M., Satsangi P., “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites”, Front. Mech. Eng., 8:2 (2013), 187–200 | DOI
[4] Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Amsterdam, Elsever, 2013, xii+412 pp. | DOI
[5] Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A., Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells], Fizmatlit, Moscow, 2014, 408 pp. (In Russian)
[6] Gibson R. F., Principles of Composite Material Mechanics, CRC Press, Boca Raton, 2016 | DOI
[7] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie zhestkikh polimernykh materialov [The Strength of Polymeric and Composite Materials], Zinatne, Riga, 1972, 500 pp. (In Russian)
[8] Ambartsumyan S. A., Theory of Anisotropic Plates: Strength, Stability, and Vibration, v. 2, Progress in Materials Science Series, Technomic, Stamford, 1970, 248 pp.
[9] Bogdanovich A. E., Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Non-Linear Dynamic Problems for Composite Cylindrical Shells], Zinatne, Riga, 1987, 295 pp. (In Russian)
[10] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics of Composite Structures], Nizhni Novgorod State Univ., Nizhni Novgorod, 2002, 400 pp. (In Russian)
[11] Reddy J. N., Mechanics of laminated composite plates. Theory and analysis, CRC Press, Boca Raton, 2004, xxiii+831 pp. | DOI
[12] Kaledin V. O., Aul'chenko S. M., Mitkevich A. B., et. al., Modelirovanie statiki i dinamiki obolochechnykh konstruktsii iz kompozitsionnykh materialov [Modeling Statics and Dynamics of Shell Structures Made of Composite Materials], Fizmatlit, Moscow, 2014, 196 pp. (In Russian)
[13] Yankovskii A. P., “Modeling of dynamic elastic-plastic behavior of flexible reinforced shallow shells”, Composite Materials Constructions, 2018, no. 2, 3–14 (In Russian)
[14] Zhigun I. G., Dushin M. I., Polyakov V. A., Yakushin V. A., “Composites reinforced with a system of three straight mutually orthogonal fibers. 2. Experimental study”, Polymer Mechanics, 9:6 (1973), 895–900 | DOI
[15] Tarnopol'skii Yu. M., Zhigun I. G., Polyakov V. A., Prostranstvenno-armirovannye kompozitsionnye materialy [Spatially Reinforced Composite Materials], Mashinostroenie, Moscow, 1987, 224 pp. (In Russian)
[16] Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., “A new generation of 3D woven fabric preforms and composites”, Sampe J., 37:3 (2001), 3–17
[17] Schuster J., Heider D., Sharp K., Glowania M., “Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites”, Mech. Compos. Mater., 45:2 (2009), 241–254 | DOI
[18] Tarnopol'skii Y. M., Polyakov V. A., Zhigun I. G., “Composite materials reinforced with a system of three straight, mutually orthogonal fibers. 1. Calculation of the elastic characteristics”, Polymer Mechanics, 9:5 (1973), 754–759 | DOI
[19] Kregers A. F. Teters G. A., “Structural model of deformation of anisotropic three-dimensionally reinforced composites”, Mech. Compos. Mater., 18:1 (1982), 10–17 | DOI
[20] Yankovskii A. P., “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model”, Mech. Compos. Mater., 46:5 (2010), 451–460 | DOI
[21] Yankovskii A. P., “Elastic-plastic deformation of flexible plates with spatial reinforcement structures”, J. Appl. Mech. Tech. Phys., 59:6 (2018), 1058–1066 | DOI | DOI
[22] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Vibropogloshchaiushchie svoistva konstruktsionnykh materialov: Spravochnik [Vibration-Absorbing Properties of Structural Materials: A Handbook], Naukova dumka, Kiev, 1971, 375 pp. (In Russian)
[23] Freudenthal A. M., Geiringer H., “The Mathematical Theories of the Inelastic Continuum”, Elasticity and Plasticity. Encyclopedia of Physics, ed. S. Flügge, Springer, Berlin, Heidelberg, 1958, 229–433 | DOI
[24] Reissner E., “On transverse vibrations of thin, shallow elastic shells”, Quart. Appl. Math., 13:2 (1955), 169–176 | DOI
[25] Houlston R., DesRochers C. G., “Nonlinear structural response of ship panels subjected to air blast loading”, Comput. Struct., 26:1–2 (1987), 1–15 | DOI
[26] Zeinkiewicz O. C., Taylor R. L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000, 707 pp.
[27] Dekker K., Verwer J. G., Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, New York, 1984, x+308 pp.
[28] Khazhinskii G. M., Modeli deformirovaniia i razrusheniia metallov [Deformation and Long-Term Strength of Metals], Nauchnyi Mir, Moscow, 2011, 231 pp. (In Russian)
[29] Yankovskii A. P., “Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates”, Computational Continuum Mechanics, 9:3 (2016), 279–297 (In Russian) | DOI
[30] Handbook of composites, ed. G. Lubin, Van Nostrand Reinhold Company Inc., New York, 1982, 786 pp.
[31] Kompozitsionnye materialy [Composite Materials], ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp. (In Russian)