Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a3, author = {A. V. Khokhlov}, title = {Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of~its~maximum with respect to strain and strain rate}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {469--505}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a3/} }
TY - JOUR AU - A. V. Khokhlov TI - Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of~its~maximum with respect to strain and strain rate JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 469 EP - 505 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a3/ LA - ru ID - VSGTU_2020_24_3_a3 ER -
%0 Journal Article %A A. V. Khokhlov %T Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of~its~maximum with respect to strain and strain rate %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 469-505 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a3/ %G ru %F VSGTU_2020_24_3_a3
A. V. Khokhlov. Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of~its~maximum with respect to strain and strain rate. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 469-505. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a3/
[1] Khokhlov A. V., “General properties of stress-strain curves at constant strain rate yielding from linear theory of viscoelasticity”, Probl. Prochn. Plast. [Problems of Strenght and Plasticity], 77:1 (2015), 60–74 (In Russian) | DOI
[2] Khokhlov A. V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 326–361 (In Russian) | DOI | Zbl
[3] Khokhlov A. V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI | DOI
[4] Khokhlov A. V., “Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson's ratio evolution based on the linear viscoelasticity theory”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019), 671–704 (In Russian) | DOI
[5] Khokhlov A. V., “Applicability indicators of the linear viscoelasticity theory using creep curves under tensile load combined with constant hydrostatic pressure”, Mekh. Komp. Mater. Konstr., 25:2 (2019), 259–280 (In Russian) | DOI
[6] Scott-Blair G. W., Caffyn J., “Significance of power-law relations in rheology”, Nature, 155 (1945), 171–172 | DOI
[7] Rabotnov Yu. N., “Equilibrium of an elastic medium with after-effect”, Fractional Calculus and Applied Analysis, 17:3 (2014), 684–696 | DOI | Zbl | Zbl
[8] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl
[9] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | Zbl
[10] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | Zbl
[11] Mainardi F., Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Spec. Top., 193:1 (2011), 133–160 | DOI
[12] Ogorodnikov E. N., Radchenko V. P., Ungarova L. G., “Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann–Liouville apparatus”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194 (In Russian) | DOI | Zbl
[13] Astarita G., Marrucci G., Principles of non-Newtonian Fluid Mechanics, McGraw-Hill, London, New York, 1974, 289 pp.
[14] Pearson C. E., “The viscous properties of extruded eutectic alloys of Pb-Sn and Bi-Sn”, J. Inst. Metals, 54 (1934), 111–123
[15] Bochvar A. A., Sviderskaya Z. A., “The phenomenon of superplasticity in alloys of zinc with aluminum”, Izv. Akad. Nauk SSSR, Otdel. Tekh. Nauk, 1945, no. 9, 821–824 (In Russian)
[16] Zehr S. W., Backofen W. A., “Superplasticity in Lead-Tin alloys”, Trans. ASM, 61 (1968), 300–313
[17] Hedworth J., Stowell M. J., “The measurement of strain rate sensitivity in superplastic alloys”, J. Mater. Sci., 6 (1971), 1061–1069 | DOI
[18] Grabski M. V., Strukturnaia sverkhplastichnost' metallov [Structural Superplasticity of Metals], Metallurgiia, Moscow, 1975, 272 pp. (In Russian)
[19] Smirnov O. M., Obrabotka metallov davleniem v sostoianii sverkhplastichnosti [Pressure Treatment of Metals in the State of Superplasticity], Mashinostroenie, Moscow, 1979, 184 pp. (In Russian)
[20] Padmanabhan K. A., Davies J. J., Superplasticity, Springer-Verlag, Berlin, 1980, xiv+314 pp. | DOI
[21] Novikov I. I., Portnoi V. K., Sverkhplastichnost' splavov s ul'tramelkim zernom [Superplasticity of Alloys with Ultrafine Grain], Metallurgiia, Moscow, 1981, 168 pp. (In Russian)
[22] Kaibyshev O. A., Sverkhplastichnost' promyshlennykh splavov [Superplasticity of Industrial Alloys], Metallurgiia, Moscow, 1984, 264 pp. (In Russian)
[23] Segal V. M., Reznikov V. I., Kopylov V. I., Pavlik D.A., Protsessy plasticheskogo strukturoobrazovaniia metallov [Plastic Structure Formation in Metals], Nauka i tekhnika, Minsk, 1994, 232 pp. (In Russian)
[24] Nieh T. G., Wadsworth J., Sherby O. D., Superplasticity in Metals and Ceramics, Cambridge Solid State Science Series, Cambridge Univ. Press, Cambridge, 1997, xiv+287 pp. | DOI
[25] Vasin R. A., Enikeev F. U., Vvedenie v mekhaniku sverkhplastichnosti [Introduction to the Superplasticity Mechanics], Gilem, Ufa, 1998, 280 pp. (In Russian)
[26] Padmanabhan K. A., Vasin R. A., Enikeev F. U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin, Heidelberg, 2001, xix+363 pp. | DOI
[27] Chumachenko E. N., Smirnov O. M., Tsepin M. A., Sverkhplastichnost': Materialy, teoriia, tekhnologii [Superplasticity: Materials, Theory, Technology], KomKniga, Moscow, 2005, 320 pp. (In Russian)
[28] Segal V. M., Beyerlein I. J., Tome C. N., et al., Fundamentals and Engineering of Severe Plastic Deformation, Nova Science Publ., New York, 2010, 542 pp.
[29] Langdon T. G., “Forty-five years of superplastic research: Recent developments and future prospects”, Mater. Sci. Forum, 838–839 (2016), 3–12 | DOI
[30] Sharifullina E. R., Shveikin A. I., Trusov P. V., “Review of experimental studies on structural superplasticity: Internal structure evolution of material and deformation mechanisms”, PNRPU Mechanics Bulletin, 2018, no. 3, 103–127 (In Russian) | DOI
[31] Wang G. C., Fu M. W., Dong H. B., et al., “Superplasticity deformation of Ti-6Al-2Zr-1Mo-1V induced by the cyclic change of strain-rate and MaxmSPD”, J. Alloys Compd., 491:1–2 (2010), 213–217 | DOI
[32] Sotoudeh K., Bate P. S., “Diffusion creep and superplasticity in aluminium alloys”, Acta Mater., 58:6 (2010), 1909–1920 | DOI
[33] Sun Q. J., Wang G. C., “Microstructure and superplasticity of TA15 alloy”, Mater. Sci. Eng. A., 606 (2014), 401–408 | DOI
[34] Blandin J. J., “Superplasticity of metallic alloys: Some current findings and open questions”, Mater. Sci. Forum, 838–839 (2016), 13–22 | DOI
[35] Mikhaylovskaya A. V., Mosleh A. O., Kotov A. D., et al., “Superplastic deformation behaviour and microstructure evolution of near-$\alpha$Ti-Al-Mn alloy”, Mater. Sci. Eng. A, 708 (2017), 469–477 | DOI
[36] Mosleh A. O., Mikhaylovskaya A. V., Kotov A. D., et al., “Experimental investigation of the effect of temperature and strain rate on the superplastic deformation behavior of Ti-based alloys in the ($\alpha +\beta$) temperature field”, Metals, 8:10 (2018), 819 | DOI
[37] Segal V. M., Reznikov V. I., Dobryshevshiy A. E., Kopylov V. I., “Plastic working of metals by simple shear”, Russian Metallurgy (Metally), 1:1 (1981), 99–105
[38] Gromov N. P., Teoriia obrabotki metallov davleniem [Theory of Metal Forming], Metallurgiya, Moscow, 1967, 340 pp. (In Russian)
[39] Kaibyshev O. A., Utyashev F. Z., Sverkhplastichnost', izmel'chenie struktury i obrabotka trudnodeformiruemykh splavov [Superplasticity, Structure Refinement and Processing of Hardly-Deformed Alloys], Nauka, Moscow, 2002, 438 pp. (In Russian)
[40] Valiev R. Z., Aleksandrov I. V., Ob"emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva [Bulk Nanostructured Metallic Materials: Fabrication, Structure and Properties], Akademkniga, Moscow, 2007, 398 pp. (In Russian)
[41] Efimov O. Yu., Gromov V. E., Ivanov Yu. F., Formirovanie struktury, fazovogo sostava i svoistv stalei i splavov v uprochniaiushchikh tekhnologiiakh obrabotki davleniem [Formation of the Structure, Phase Composition and Properties of Steels and Alloys in Hardening Technologies of Pressure Treatment], Inter-Kuzbass, Novokuznetsk, 2012, 345 pp. (In Russian)
[42] Faraji G., Kim H. S., Kashi H. T., Severe Plastic Deformation: Methods, Processing and Properties, Elsevier, Amsterdam, 2018, 324 pp. | DOI
[43] Valiev R. Z., Islamgaliev R. K., “Structure and mechanical behavior of ultrafine-grained metals and alloys subjected to severe plastic deformation”, Fiz. Metal. Metaloved., 85:3 (1998), 161–177 (In Russian)
[44] Glezer A. M., Metlov L. S., “Megaplastic deformation of solids”, Fiz. Tekh. Vys. Davl., 18:4 (2008), 21–35 (In Russian)
[45] Malinin N. N., Polzuchest' v obrabotke metallov davleniem [Creep theories in metal forming], Mashinostroenie, Moscow, 1986, 221 pp. (In Russian)
[46] Krishtal M. M., “Discontinuous fluidity as the reason for anomalies of high-speed and temperature dependences of deformation resistance”, Fiz. Metal. Metaloved., 85:1 (1998), 127–139 (In Russian)
[47] Bazhenov S. L., Koval'chuk E. P., “Self-oscillating plastic deformation of polymers”, Dokl. Phys. Chem., 417:1 (2007), 308–310 | DOI
[48] Rudskoy A. M., Rudaev Ya. I., Mekhanika dinamicheskoi sverkhplastichnosti aliuminievykh splavov [Mechanics of Dynamic Superplasticity of Aluminum Alloys], Nauka, St. Petersburg, 2009, 218 pp. (In Russian)
[49] Yu D., Chen X., Yu W., Chen G., “Thermo-viscoplastic modeling incorporating dynamic strain aging effect on the uniaxial behavior of Z2CND18.12N stainless steel”, Int. J. Plast., 37 (2012), 119–139 | DOI
[50] Trusov P. V., Chechulina E. A., “Serrated yielding: physical mechanisms, experimental dates, macro-phenomenological models”, PNRPU Mechanics Bulletin, 2014, no. 3, 185-231 (In Russian) | DOI
[51] Yang H. K., Zhang Z. J., Tian Y. Z., Zhang Z. F., “Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels”, Mater. Sci. Eng. A, 690:6 (2017), 146–157 | DOI
[52] Peng J., Peng J., Li K.-S., et al., “Temperature-dependent SRS behavior of 316L and its constitutive model”, Acta Metall. Sin. (Engl. Lett.), 31 (2018), 234–244 | DOI
[53] Vasin R. A., Enikeev F. U., Kruglov A. A., Safiullin R. V., “On the identification of constitutive relations by the results of technological experiments”, Mech. Solids, 38:2 (2003), 90–100
[54] Khokhlov A. V., “Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions”, Moscow Univ. Mech. Bull., 71:6 (2016), 132–136 | DOI
[55] Khokhlov A. V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves”, Mech. Compos. Mater., 55:2 (2019), 195–210 | DOI
[56] Vasin R. A., Enikeev F. U., Mazurski M. I., “Determination of the strain rate sensitivity of a superplastic material at constant load test”, Mater. Sci. Eng. A, 224:1–2 (1997), 131–135 | DOI
[57] Bkhattacharya S. S., Bylya O. I., Vasin R. A., Padmanabhan K. A., “Mechanical behavior of titanium alloy Ti-6Al-4V with unprepared microstructure under jumpwise variations of the strain rate in the superplastic state”, Mech. Solids, 44:6 (2009), 951–958 | DOI
[58] Sosnin O. V., Gorev B. V., Lyubashevskaya I. V., “High-temperature creep and superplasticity of materials”, J. Appl. Mech. Tech. Phys., 38:2 (1997), 293–297 | DOI
[59] Vasin R. A., Enikeev F. U., Mazurski M. I., Munirova O. S., “Mechanical modelling of the universal superplastic curve”, J. Mater. Sci., 35:10 (2000), 2455–2466 | DOI
[60] Bylya O. I, Sarangi M. K., Ovchinnikova N. V., et al., “FEM simulation of microstructure refinement during severe deformation”, IOP Conf. Ser.: Mater. Sci. Eng., 63 (2014), 012033 | DOI
[61] Alabort E., Putman D., Reed R. C., “Superplasticity in Ti-6A-4V: Characterisation, modelling and applications”, Acta Mater., 95 (2015), 428–442 | DOI
[62] Bylya O. I., Vasin R. A., Blackwell P. L., “The mechanics of superplastic forming — How to incorporate and model superplastic and superplastic-like conditions”, Mater. Sci. Forum, 838 (2016), 468–476 | DOI
[63] Lin Y. C., Chen X.-M., “A critical review of experimental results and constitutive descriptions for metals and alloys in hot working”, Mater. Design, 32:4 (2011), 1733–1759 | DOI
[64] Cheng Y. Q., Zhang H., Chen Z. H., Xian K. F., “Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation”, J. Mater. Process. Technol., 208:1–3 (2008), 29–34 | DOI
[65] Rabotnov Yu. N., Creep of Structural Members, North-Holland Series in Applied Mathematics and Mechanics, North-Holland, Amsterdam, 1969, ix+822 pp.
[66] Lokoshchenko A. M., Creep and long-term strength of metals, CRC Press, Boca, Raton, 2018, xviii+545 pp. | DOI
[67] Nikitenko A. F., Sosnin O. V., Torshenov N. G., Shokalo I. K., “Creep of hardening materials with different properties in tension and compression”, J. Appl. Mech. Tech. Phys., 12:2 (1971), 277–281 | DOI
[68] Takagi H., Dao M., Fujiwara M., “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling”, Mater. Trans., 55:2 (2014), 275–284 | DOI
[69] Beliakova T. A., Goncharov I. A., Khokhlov A. V., “The impossibility of modelling of sigmoid superplasticity curves using only parallel or series connections of power-law viscous elements”, Mekh. Komp. Mater. Konstr., 25:3 (2019), 299–315 (In Russian) | DOI
[70] Khokhlov A. V., “Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin–Voigt models”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019), 56–67 (In Russian) | DOI
[71] Khokhlov A. V., “The characteristic of the strain rate sensitivity of stress-strain curves in the linear viscoelasticity theory and its interrelation with relaxation modulus”, Probl. Prochn. Plast. [Problems of Strenght and Plasticity], 81:4 (2019), 521–536 (In Russian) | DOI
[72] Murty G. S., Banerjee S., “Evaluation of threshold stress from the stress-strain rate data of superplastic materials”, Scripta Metallurgica et Materialia, 31:6 (1994), 707–712 | DOI