Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_3_a0, author = {A. B. Beylin and L. S. Pulkina}, title = {A~problem with dynamical boundary condition for~a~one-dimensional hyperbolic equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {407--423}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a0/} }
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - A~problem with dynamical boundary condition for~a~one-dimensional hyperbolic equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 407 EP - 423 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a0/ LA - ru ID - VSGTU_2020_24_3_a0 ER -
%0 Journal Article %A A. B. Beylin %A L. S. Pulkina %T A~problem with dynamical boundary condition for~a~one-dimensional hyperbolic equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 407-423 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a0/ %G ru %F VSGTU_2020_24_3_a0
A. B. Beylin; L. S. Pulkina. A~problem with dynamical boundary condition for~a~one-dimensional hyperbolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a0/
[1] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 2004 (In Russian)
[2] Skubachevskii A. L., Steblov G. M., “On the spectrum of differential operators with a domain that is not dense in $L_2(0,1)$”, Soviet Math. Dokl., 44:3 (1992), 870–875 | MR | Zbl
[3] Ionkin N. I., “The solution of a certain boundary value-problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (In Russian) | MR | Zbl
[4] Lažetić N. L., “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differ. Equ., 42:8 (2006), 1134–1139 | DOI | MR
[5] Rogozhnikov A. M., “On various kinds of boundary conditions for one-dimensional wave equation”, The Collection of Articles by Young Scientists at the MSU Faculty of Computational Mathematics and Cybernetics, v. 10, 2013, 188–214 (In Russian)
[6] Kirichek V. A., Pulkina L. S., “Problem with dynamic boundary conditions for a hyperbolic equation”, Vestn. Samarsk. Univ. Estestvenno-Nauchn. Ser., 23:1 (2017), 21–27 (In Russian) | Zbl
[7] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniiakh [Blow-Up in Nonclassical Wave Equations], URSS, Moscow, 2010 (In Russian)
[8] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibrations of a beam with dynamic boundary conditions”, Vestn. Samarsk. Gosud. Univ. Estestvenno-Nauchn. Ser., 2014, no. 3(114), 9–19 (In Russian) | Zbl
[9] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear second-order boundary damping”, Electron. J. Differ. Equ., 1998 (1998), no. 28, 10 pp. https://digital.library.txstate.edu/handle/10877/7927 | Zbl
[10] Andrews K. T., Kuttler K. L., Shillor M., “Second order evolution equations with dynamic boundary conditions”, J. Math. Anal. Appl., 197:3 (1996), 781–795 | DOI | Zbl
[11] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibration in a short bar with dynamical boundary conditions”, Vestn. Samarsk. Univ. Estestvenno-Nauchn. Ser., 23:4 (2017), 7–18 (In Russian) | DOI | Zbl
[12] Louw T., Whitney S., Subramanian A., Viljoen H., “Forced wave motion with internal and boundary damping”, J. Appl. Phys., 111 (2012), 014702 | DOI
[13] Pulkina L. S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Math. (Iz. VUZ), 60:9 (2016), 38–45 | DOI | Zbl
[14] Fedotov I. A., Polyanin A. D., Shatalov M. Y., “Theory of free and forced vibrations of a rigid rod based on the Rayleigh model”, Dokl. Phys., 52:11 (2007), 607–612 | DOI | Zbl
[15] Pulkina L. S., Beylin A. B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, Electron. J. Differ. Equ., 2019 (2019), no. 29, 9 pp. https://ejde.math.txstate.edu/Volumes/2019/29/abstr.html | Zbl
[16] Khazanov Kh. S., Mekhanicheskie kolebaniia sistem s raspredelennymi parametrami [Mechanical Vibrations of Systems with Distributed Parameters], Samara State Aerospace Univ., Samara, 2002 (In Russian)
[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki [Boundary-Value Problems of Mathematical Physics], Nauka, Moscow, 1973 (In Russian) | Zbl
[18] Il'in V. A., Tikhomirov V. V., “The wave equation with boundary control at two ends and the problem of the complete damping of a vibration process”, Differ. Equ., 35:5 (1999), 697–708 | MR | Zbl
[19] Il'in V. A., Izbrannye trudy V.A. Il'ina [Selected Works of V.A. Il'in], v. 2, Maks-Press, Moscow, 2008 (In Russian)