Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_2_a7, author = {A. N. Khorin and A. A. Konyukhova}, title = {Couette flow of hot viscous gas}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {365--378}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a7/} }
TY - JOUR AU - A. N. Khorin AU - A. A. Konyukhova TI - Couette flow of hot viscous gas JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 365 EP - 378 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a7/ LA - ru ID - VSGTU_2020_24_2_a7 ER -
%0 Journal Article %A A. N. Khorin %A A. A. Konyukhova %T Couette flow of hot viscous gas %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 365-378 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a7/ %G ru %F VSGTU_2020_24_2_a7
A. N. Khorin; A. A. Konyukhova. Couette flow of hot viscous gas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 365-378. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a7/
[1] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys., Ser. 6, 21 (1890), 433–510
[2] Schlichting H., Gersten K., Grenzschicht-Theorie, Springer-Verlag, Berlin, 2006 | DOI | MR
[3] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966 | DOI | MR
[4] White F., Viscous Fluid Flow, Mcgraw-Hill Series in Mechanical Engineering Book Series, McGraw Hill, New York, 2006
[5] Kochin N. E., Kibel I. A., Roze N. V., Theoretical Hydromechanics, Wiley Interscience, New York, 1965 | MR
[6] Grodzovskii G. L., “Viscous gas flow between two moving parallel walls and between two rotating cylinders”, Prikl. Mat. Mekh., 19:1 (1955), 99–102 (In Russian) | MR
[7] Zhmulin E. M., “Viscous gas flow between two moving parallel plates”, Uch. Zap. TsAGI, 2:4 (1971), 31–37 (In Russian)
[8] Rogers G. F. C., Mayhew Y. R., Thermodynamic and Transport Properties of Fluids: S.I. Units, Blackwell, Malden, USA, 1995
[9] Golubkin V. N., Sizykh G. B., “On the compressible Couette flow”, TsAGI Science Journal, 49:1 (2018), 29–41 | DOI | MR
[10] Brutyan M. A., Krapivsky P. L., “Exact solutions to the steady Navier–Stokes equations of viscous heat-conducting gas flow induced by the plane jet issuing from the line source”, Fluid Dyn., 53, Suppl. 2 (2018), 1–10 | DOI | DOI | MR | Zbl
[11] Brutyan M. A., Ibragimov U. G., “Selfsimilar and nonselfsimilar solutions of the viscous compressible flow inside a cone”, Proceedings of MIPT, 10:4 (2018), 113–121 (In Russian)
[12] Bosnyakov S., Mikhaylov S. V., Morozov A. N., et al., “Implementation of high-order discontinuous Galerkin method for solution of practical tasks in external aerodynamics and aeroacoustics”, N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), IDIHOM: Industrialization of High-Order Methods – A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer, Cham, 2015, 337–379 | DOI | MR
[13] Bosnyakov S., Mikhaylov S. V., Podaruev V. Yu., et al., “Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores”, 23rd AIAA Computational Fluid Dynamics Conference (AIAA Aviation 2017, USA, Denver, Colorado, 5–9 June 2017), 2017, 2017–3943 | DOI
[14] Egorov I. V., Novikov A. V., “Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds”, Comput. Math. Math. Phys., 56:6 (2016), 1048–1064 | DOI | DOI | MR | Zbl
[15] Egorov I. V., Pal'chekovskaya N. V., Shvedchenko V. V., “The effect of spatial perturbations of a supersonic flow on heat flux to the surface of blunt bodies”, High Temp., 53:5 (2015), 677–689 | DOI | DOI
[16] Golubkin V. N., Sizykh G. B., “Viscous Gas Flow between Vertical Walls”, Fluid Dyn., 53, Suppl. 2 (2018), 11–18 | DOI | DOI | MR | Zbl