Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 249-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study boundary value and spectral problems in a bounded domain $G$ with smooth border for operators $\operatorname{rot} +\lambda I$ and $\nabla \operatorname{div} +\lambda I$ in the Sobolev spaces. For $\lambda\neq 0$ these operators are reducible (by B. Veinberg and V. Grushin method) to elliptical matrices and the boundary value problems and satisfy the conditions of V. Solonnikov's ellipticity. Useful properties of solutions of these spectral problems derive from the theory and estimates. The $\nabla \operatorname{div}$ and $ \operatorname{rot}$ operators have self-adjoint extensions $\mathcal{N}_d$ and $\mathcal{S}$ in orthogonal subspaces $\mathcal{A}_{\gamma }$ and $\mathbf{V}^0$ forming from potential and vortex fields in $\mathbf{L}_{2}(G)$. Their eigenvectors form orthogonal basis in $\mathcal{A}_{\gamma }$ and $\mathbf{V}^0$ elements which are presented by Fourier series and operators are transformations of series. We define analogues of Sobolev spaces $\mathbf{A}^{2k}_{\gamma }$ and $\mathbf{W}^m$ orders of $2k$ and $m$ in classes of potential and vortex fields and classes $ C (2k,m)$ of their direct sums. It is proved that if $\lambda\neq \operatorname{Sp}(\operatorname{rot})$, then the operator $ \operatorname{rot}+\lambda I$ displays the class $C(2k,m+1)$ on the class $C(2k,m)$ one-to-one and continuously. And if $\lambda\neq \operatorname{Sp}(\nabla \operatorname{div})$, then operator $\nabla \operatorname{div}+\lambda I$ maps the class $C(2(k+1), m)$ on the class $C(2k,m)$, respectively.
Mots-clés : Sobolev spaces
Keywords: gradient operator, divergence operator, curl operator, elliptic boundary value problems, spectral problems.
@article{VSGTU_2020_24_2_a2,
     author = {R. S. Saks},
     title = {Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence  operators},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {249--274},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence  operators
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 249
EP  - 274
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/
LA  - ru
ID  - VSGTU_2020_24_2_a2
ER  - 
%0 Journal Article
%A R. S. Saks
%T Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence  operators
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 249-274
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/
%G ru
%F VSGTU_2020_24_2_a2
R. S. Saks. Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence  operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 249-274. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/

[1] Sobolev S. L., Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publ., Montreux, 1992, xvi+379 pp. | Zbl | Zbl

[2] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978, 397 pp.

[3] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | Zbl

[4] Borchers W., Sohr H., “On the equations $\mathop{\mathrm{div}} u=f$ and $\mathop{\mathrm{rot}} v=g$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI | Zbl

[5] Sobolev S. L., “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (In Russian) | MR | Zbl

[6] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, 1969, xviii+224 pp.

[7] Friedrichs K. O., “Differential forms on riemannian manifolds”, Comm. Pure Appl. Math., 8:2 (1955), 551–590 pp. | DOI | Zbl

[8] Bykhovskii É. B., Smirnov N. V., “Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis”, Mathematical problems of hydrodynamics and magnetohydrodynamics for a viscous incompressible fluid, Collected papers, Trudy Mat. Inst. Steklov., 59, Acad. Sci. USSR, Moscow–Leningrad, 1960, 5–36 (In Russian) | MR | Zbl

[9] Yoshida Z., Giga Y., “Remarks on spectra of operator rot”, Math. Z., 204 (1990), 235–245 | DOI | Zbl

[10] Zorich V. A., Mathematical analysis II, Springer, Berlin, 2016, xx+720 pp. | Zbl | Zbl

[11] Solonnikov V. A., “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, Nauka, Leningrad. Otdel., Leningrad, 1971, 112–158 (In Russian) | MR | Zbl

[12] Saks R. S., “Boundary value problems for the system $\operatorname{rot}u+\lambda u=h$”, Differ. Uravn., 8:1 (1972), 126–133 (In Russian) | MR | Zbl

[13] Volevich L. R., “Solubility of boundary value problems for general elliptic systems”, Mat. Sb. (N.S.), 68(110):3 (1965), 373–416 (In Russian) | MR | Zbl

[14] Bourguignon J. P., Brezis H., “Remarks on the Euler equation”, J. Funct. Anal., 15:4 (1974), 341–363 | DOI | Zbl

[15] Foias C., Temam R., “Remarques sur les équations de Navier–Stokes stationnaireset les phénomènes successifs de bifurcation”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4, 5:1 (1978), 29–63 http://www.numdam.org/item/ASNSP_1978_4_5_1_29_0/ | Zbl

[16] Vainberg B. R., Grushin V. V., “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl

[17] Saks R. S., “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81 | DOI | MR

[18] Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, New York, 1971 | Zbl

[19] Saks R. S., “Operator $\nabla \operatorname{div}$ and Sobolev spaces”, Dinamicheskie Sistemy, 8:4 (2018), 385–407 (In Russian) | Zbl

[20] Saks R. S., “On properties of the generalized elliptic pseudo-differential operators on closed manifolds”, J. Math. Sci. (New York), 99:1 (2000), 936–968 | DOI | MR | Zbl

[21] Temam R. I., Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984 | DOI | Zbl

[22] Woltjer L., “A theorem on force-free magnetic fields”, Proc. Nat. Acad. Sci., 44 (1958), 489-491 | DOI | Zbl

[23] Taylor J. B., “Relaxation of toroidal plasma and generation of reverse magnetic fields”, Phys. Rev. Letters, 33:19 (1974), 1139–1141 | DOI

[24] Arnold V. I., “Sur la topologie des écoulements stationnaires des fluides parfaits”, C. R. Acad. Sci. Paris, 261 (1965), 17–20 ; Vladimir I. Arnold — Collected Works, v. 2, Springer, Berlin, Heidelberg, 2013, 15–18 | Zbl | DOI

[25] Kozlov V. V., Obshchaia teoriia vikhrei [General Vortex Theory], Udmurt. State Univ., Izhevsk, 1998, 240 pp. (In Russian)

[26] Woltjer L., “The Crab Nebula”, Bull. Astron. Inst. Netherlands, 14 (1958), 39–80

[27] “The spectrum of the $\operatorname{curl}$ operator on spherically symmetric domains”, Physics of Plasmas, 7 (2000), 2766–2775 | DOI

[28] Saks R. S., “Spectrum of the curl operator in a ball under sliding conditions and eigenvalues for oscillations of an elastic ball fixed on the boundary”, Trudy Conf. Complex Analysis, Differential Equations, and Related Topics, IV, Ufa, 2000, 61–68

[29] Saks R. S., “On the spectrum of the operator $\operatorname{curl}$”, Progress in Analysis, Proceedings of the 3rd ISAAC Congress (Berlin, Germany, 20–25 August 2001), v. 1, 2003, 811–819 | DOI

[30] R. S. Saks, “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 131–146 (In Russian) | DOI | Zbl

[31] Saks R. S., “Global solutions of the Navier–Stokes equations in uniformly rotating space”, Theoret. and Math. Phys., 162:2 (2010), 163–178 | DOI | DOI | MR | Zbl

[32] Saks R. S., Khaybullin A. G., “One method for the numerical solution of the cauchy problem for the navier-stokes equations and fourier series of the curl operator”, Dokl. Math., 80:3 (2009), 800–805 | DOI | Zbl

[33] Saks R. S., “Cauchy problem for Navier–Stokes equations, Fourier method”, Ufa Math. J., 3:1 (2011), 51–77 | Zbl

[34] Islamov G. G., “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696 (In Russian) | DOI | Zbl

[35] Bogovskii M. E., “Solutions of some problems of vector analysis, associated with the operators $\operatorname{div}$ and $\operatorname{grad}$”, Trudy Seminara S. L. Soboleva, 1980, no. 1, 5–40 (In Russian)

[36] Maslennikova V. N., Bogovskii M. E., “Approximation of potential and solenoidal vector fields”, Sib. Math. J., 24:5 (1983), 768–787 | DOI | Zbl

[37] Heywood J. G., “On uniquness questions in theory of viscous flow”, Acta Math., 136:2 (1976), 61–102 | DOI | Zbl

[38] Saks R. S., “Orthogonal subspaces of the space $L_2(G)$ and self-adjoint extensions of the curl and gradient-of-divergence operators”, Dokl. Math., 91:3 (2015), 313–317 | DOI | DOI | Zbl

[39] Saks R. S., “The gradient-of-divergence operator in $L_2(G)$”, Dokl. Math., 91:3 (2015), 359–363 | DOI | DOI | Zbl

[40] Saks R. S., “The curl operator in the $L_2(G)$ space”, Taurida Journal of Computer Science Theory and Mathematics, 2015, no. 1, 87–103 (In Russian)