Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_2_a2, author = {R. S. Saks}, title = {Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {249--274}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/} }
TY - JOUR AU - R. S. Saks TI - Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 249 EP - 274 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/ LA - ru ID - VSGTU_2020_24_2_a2 ER -
%0 Journal Article %A R. S. Saks %T Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 249-274 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/ %G ru %F VSGTU_2020_24_2_a2
R. S. Saks. Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 249-274. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a2/
[1] Sobolev S. L., Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publ., Montreux, 1992, xvi+379 pp. | Zbl | Zbl
[2] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978, 397 pp.
[3] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | Zbl
[4] Borchers W., Sohr H., “On the equations $\mathop{\mathrm{div}} u=f$ and $\mathop{\mathrm{rot}} v=g$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI | Zbl
[5] Sobolev S. L., “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (In Russian) | MR | Zbl
[6] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, 1969, xviii+224 pp.
[7] Friedrichs K. O., “Differential forms on riemannian manifolds”, Comm. Pure Appl. Math., 8:2 (1955), 551–590 pp. | DOI | Zbl
[8] Bykhovskii É. B., Smirnov N. V., “Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis”, Mathematical problems of hydrodynamics and magnetohydrodynamics for a viscous incompressible fluid, Collected papers, Trudy Mat. Inst. Steklov., 59, Acad. Sci. USSR, Moscow–Leningrad, 1960, 5–36 (In Russian) | MR | Zbl
[9] Yoshida Z., Giga Y., “Remarks on spectra of operator rot”, Math. Z., 204 (1990), 235–245 | DOI | Zbl
[10] Zorich V. A., Mathematical analysis II, Springer, Berlin, 2016, xx+720 pp. | Zbl | Zbl
[11] Solonnikov V. A., “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, Nauka, Leningrad. Otdel., Leningrad, 1971, 112–158 (In Russian) | MR | Zbl
[12] Saks R. S., “Boundary value problems for the system $\operatorname{rot}u+\lambda u=h$”, Differ. Uravn., 8:1 (1972), 126–133 (In Russian) | MR | Zbl
[13] Volevich L. R., “Solubility of boundary value problems for general elliptic systems”, Mat. Sb. (N.S.), 68(110):3 (1965), 373–416 (In Russian) | MR | Zbl
[14] Bourguignon J. P., Brezis H., “Remarks on the Euler equation”, J. Funct. Anal., 15:4 (1974), 341–363 | DOI | Zbl
[15] Foias C., Temam R., “Remarques sur les équations de Navier–Stokes stationnaireset les phénomènes successifs de bifurcation”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4, 5:1 (1978), 29–63 http://www.numdam.org/item/ASNSP_1978_4_5_1_29_0/ | Zbl
[16] Vainberg B. R., Grushin V. V., “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl
[17] Saks R. S., “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81 | DOI | MR
[18] Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, New York, 1971 | Zbl
[19] Saks R. S., “Operator $\nabla \operatorname{div}$ and Sobolev spaces”, Dinamicheskie Sistemy, 8:4 (2018), 385–407 (In Russian) | Zbl
[20] Saks R. S., “On properties of the generalized elliptic pseudo-differential operators on closed manifolds”, J. Math. Sci. (New York), 99:1 (2000), 936–968 | DOI | MR | Zbl
[21] Temam R. I., Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984 | DOI | Zbl
[22] Woltjer L., “A theorem on force-free magnetic fields”, Proc. Nat. Acad. Sci., 44 (1958), 489-491 | DOI | Zbl
[23] Taylor J. B., “Relaxation of toroidal plasma and generation of reverse magnetic fields”, Phys. Rev. Letters, 33:19 (1974), 1139–1141 | DOI
[24] Arnold V. I., “Sur la topologie des écoulements stationnaires des fluides parfaits”, C. R. Acad. Sci. Paris, 261 (1965), 17–20 ; Vladimir I. Arnold — Collected Works, v. 2, Springer, Berlin, Heidelberg, 2013, 15–18 | Zbl | DOI
[25] Kozlov V. V., Obshchaia teoriia vikhrei [General Vortex Theory], Udmurt. State Univ., Izhevsk, 1998, 240 pp. (In Russian)
[26] Woltjer L., “The Crab Nebula”, Bull. Astron. Inst. Netherlands, 14 (1958), 39–80
[27] “The spectrum of the $\operatorname{curl}$ operator on spherically symmetric domains”, Physics of Plasmas, 7 (2000), 2766–2775 | DOI
[28] Saks R. S., “Spectrum of the curl operator in a ball under sliding conditions and eigenvalues for oscillations of an elastic ball fixed on the boundary”, Trudy Conf. Complex Analysis, Differential Equations, and Related Topics, IV, Ufa, 2000, 61–68
[29] Saks R. S., “On the spectrum of the operator $\operatorname{curl}$”, Progress in Analysis, Proceedings of the 3rd ISAAC Congress (Berlin, Germany, 20–25 August 2001), v. 1, 2003, 811–819 | DOI
[30] R. S. Saks, “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 131–146 (In Russian) | DOI | Zbl
[31] Saks R. S., “Global solutions of the Navier–Stokes equations in uniformly rotating space”, Theoret. and Math. Phys., 162:2 (2010), 163–178 | DOI | DOI | MR | Zbl
[32] Saks R. S., Khaybullin A. G., “One method for the numerical solution of the cauchy problem for the navier-stokes equations and fourier series of the curl operator”, Dokl. Math., 80:3 (2009), 800–805 | DOI | Zbl
[33] Saks R. S., “Cauchy problem for Navier–Stokes equations, Fourier method”, Ufa Math. J., 3:1 (2011), 51–77 | Zbl
[34] Islamov G. G., “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696 (In Russian) | DOI | Zbl
[35] Bogovskii M. E., “Solutions of some problems of vector analysis, associated with the operators $\operatorname{div}$ and $\operatorname{grad}$”, Trudy Seminara S. L. Soboleva, 1980, no. 1, 5–40 (In Russian)
[36] Maslennikova V. N., Bogovskii M. E., “Approximation of potential and solenoidal vector fields”, Sib. Math. J., 24:5 (1983), 768–787 | DOI | Zbl
[37] Heywood J. G., “On uniquness questions in theory of viscous flow”, Acta Math., 136:2 (1976), 61–102 | DOI | Zbl
[38] Saks R. S., “Orthogonal subspaces of the space $L_2(G)$ and self-adjoint extensions of the curl and gradient-of-divergence operators”, Dokl. Math., 91:3 (2015), 313–317 | DOI | DOI | Zbl
[39] Saks R. S., “The gradient-of-divergence operator in $L_2(G)$”, Dokl. Math., 91:3 (2015), 359–363 | DOI | DOI | Zbl
[40] Saks R. S., “The curl operator in the $L_2(G)$ space”, Taurida Journal of Computer Science Theory and Mathematics, 2015, no. 1, 87–103 (In Russian)