Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_2_a1, author = {V. O. Lukashchuk and S. Yu. Lukashchuk}, title = {Group classification, invariant solutions and conservation laws of nonlinear orthotropic two-dimensional filtration equation with the {Riemann--Liouville} time-fractional derivative}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {226--248}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a1/} }
TY - JOUR AU - V. O. Lukashchuk AU - S. Yu. Lukashchuk TI - Group classification, invariant solutions and conservation laws of nonlinear orthotropic two-dimensional filtration equation with the Riemann--Liouville time-fractional derivative JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 226 EP - 248 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a1/ LA - ru ID - VSGTU_2020_24_2_a1 ER -
%0 Journal Article %A V. O. Lukashchuk %A S. Yu. Lukashchuk %T Group classification, invariant solutions and conservation laws of nonlinear orthotropic two-dimensional filtration equation with the Riemann--Liouville time-fractional derivative %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 226-248 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a1/ %G ru %F VSGTU_2020_24_2_a1
V. O. Lukashchuk; S. Yu. Lukashchuk. Group classification, invariant solutions and conservation laws of nonlinear orthotropic two-dimensional filtration equation with the Riemann--Liouville time-fractional derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 226-248. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a1/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, Gordon Breach Sci. Publishers, New York, 1993, xxxvi+976 pp. | MR | Zbl
[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xv+523 pp. | MR | Zbl
[3] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl
[4] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamic approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl
[5] Hilfer R., Applications of fractional calculus in physics, World Scientific, Singapore, 2000, vii+463 pp. | MR | Zbl
[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional Calculus and its Applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl
[7] Uchaikin V. V., Metod drobnykh proizvodnykh [Method of Fractional Derivatives], Artishok, Ul'yanovsk, 2008, 512 pp. (In Russian)
[8] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Hackensack, 2010, xx+347 pp. | MR | Zbl
[9] Goloviznin V. M., Kondratenko P. S., Matveev L. V., Anomal'naia diffuziia radionuklidov v sil'noneodnorodnykh geologicheskikh formatsiiakh [Anomalous Radionuclide Diffusion in Highly Heterogeneous Heological Formations], Nauka, Moscow, 2010, 342 pp. (In Russian)
[10] Fractional Dynamics: Recent Advances, eds. J. Klafter, S. C. Lim, R. Metzler, World Scientific, Hackensack, 2011, xiv+515 pp. | MR | Zbl
[11] Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems, eds. V. Uchaikin, R. Sibatov, CRC Press, Boca Raton, 2013, xvi+257 pp. | DOI | MR | Zbl
[12] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional calculus: models and numerical methods, Series on Complexity, Nonlinearity and Chaos, 5, World Scientific, Hackensack, 2017, xxviii+448 pp. | DOI | MR | Zbl
[13] Ovsyannikov L. V., Group analysis of differential equations, Academic Press, New York, 1982, xvi+416 pp. | MR | Zbl
[14] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer, New York, 2000, xxviii+513 pp. | MR | Zbl
[15] Bluman G. W., Cheviakov A. F., Anco S. C., Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, 168, Springer, New York, 2010, xix+398 pp pp. | DOI | MR | Zbl
[16] Grigoriev Yu. N., Ibragimov N. H., Kovalev V. F., Meleshko S. V., Symmetries of integro-differential equations. With applications in mechanics and plasma physics., Lecture Notes in Physics, 806, Springer, Dordrecht, 2010, xiii+305 pp. | DOI | MR | Zbl
[17] Ibragimov N. H., Transformation groups and Lie algebras, World Scientific, Hackensack, 2013, x+185 pp. | DOI | MR | Zbl
[18] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Y., “Symmetries and group invariant solutions of fractional ordinary differential equations”, Handbook of Fractional Calculus with Applications, eds. A. Kochubei, Y. Luchko, De Gruyter, Berlin, 2019, 65–90 | DOI | MR
[19] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Y., “Symmetries, conservation laws and group invariant solutions of fractional PDEs”, Handbook of Fractional Calculus with Applications, eds. A. Kochubei, Y. Luchko, De Gruyter, Berlin, 2019, 353–382 | DOI | MR
[20] Raghavan R., Chen C., “Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity”, J. Petrol. Sci. Eng., 109 (2013), 133–143 | DOI
[21] Obembe A. D. Al-Yousef H. Y., Hossain M. E., Abu-Khamsin S. A., “Fractional derivatives and their applications in reservoir engineering problems: A review”, J. Petrol. Sci. Eng., 157 (2017), 312–327 | DOI
[22] Gazizov R. K., Lukashchuk S. Yu., “Fractional differentiation approach to modeling of fluid filtration processes in complex heterogeneous porous media”, Vestnik UGATU, 21:4 (2017), 104–112 (In Russian)
[23] Babkov O. K., “On group classification of some evolution equations”, Book of abstracts of International conference MOGRAN-16 (October 28 – November 2, 2013), Ufa State Aviation Technical Univ., Ufa, 2013, 6–7
[24] Ovsyannikov L. V., “On the property of $x$-autonomy”, Dokl. Math., 47:3 (1993), 581–584 | MR | Zbl
[25] Chirkunov Y. A., “Linear autonomy conditions for the basic Lie algebra of a system of linear differential equations”, Dokl. Math., 79:3 (2009), 415–417 | DOI | MR | Zbl | Zbl
[26] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: change of variables and nonlocal symmetries”, Ufimsk. Mat. Zh., 4:4 (2012), 54–68 (In Russian) | MR | Zbl
[27] Ibragimov N. H., “A new conservation theorem”, J. Math. Anal. Appl., 333:1 (2007), 311–328 | DOI | MR | Zbl
[28] Ibragimov N. H., “Nonlinear self-adjointness and conservation laws”, J. Phys. A: Math. Theor., 44 (2011), 432002 | DOI | Zbl
[29] Patera J., Winternitz P., “Subalgebras of real three- and four-dimensional Lie algebras”, J. Math. Phys., 18:7 (1977), 1449–1455 | DOI | MR | Zbl
[30] Lukashchuk S. Yu., “Symmetry reduction and invariant solutions for nonlinear fractional diffusion equation with a source term”, Ufa Math. J., 8:4 (2016), 111–122 | DOI | MR
[31] Ovsyannikov L. V., “On optimal systems of subalgebras”, Dokl. Math., 48:3 (1994), 645–649 | MR | Zbl
[32] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsial'nykh uravnenii mekhaniki sploshnoi sredy [Elements of Symmetry Snalysis of Differential Equations of Continuum Mechanics], Novosibirsk State Tecnical Univ., Novosibirsk, 2012, 659 pp. (In Russian)
[33] Lukashchuk S. Yu., “Conservation laws for time-fractional subdiffusion and diffusion-wave equations”, Nonlinear Dyn., 80:1–2 (2015), 791–802 | DOI | MR | Zbl
[34] Gazizov R. K., Ibragimov N. H., Lukashchuk S. Yu., “Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations”, Commun. Nonlin. Sci. Numer. Simulat., 23:1-3 (2015), 153–163 | DOI | MR | Zbl
[35] Lukashchuk S. Y., “Constructing conservation laws for fractional-order integro-differential equations”, Theoret. and Math. Phys., 184:2 (2015), 1049–1066 | DOI | DOI | MR | Zbl
[36] Ibragimov N. H., Avdonina E. D., “Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws”, Russian Math. Surveys, 68:5 (2013), 889–921 | DOI | DOI | MR | Zbl