Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a9, author = {V. N. Orlov and T. Yu. Leontieva}, title = {On extension of~the~domain for~analytical approximate solution of~one~class of~nonlinear differential equations of~the~second order in~a~complex domain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {174--186}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a9/} }
TY - JOUR AU - V. N. Orlov AU - T. Yu. Leontieva TI - On extension of~the~domain for~analytical approximate solution of~one~class of~nonlinear differential equations of~the~second order in~a~complex domain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 174 EP - 186 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a9/ LA - ru ID - VSGTU_2020_24_1_a9 ER -
%0 Journal Article %A V. N. Orlov %A T. Yu. Leontieva %T On extension of~the~domain for~analytical approximate solution of~one~class of~nonlinear differential equations of~the~second order in~a~complex domain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 174-186 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a9/ %G ru %F VSGTU_2020_24_1_a9
V. N. Orlov; T. Yu. Leontieva. On extension of~the~domain for~analytical approximate solution of~one~class of~nonlinear differential equations of~the~second order in~a~complex domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 174-186. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a9/
[1] Hill J. M., “Radial deflections of thin precompressed cylindrical rubber bush mountings”, Int. J. Solids Struct., 20:13 (1977), 93–104 | DOI
[2] Ockendon J. R., “Numerical and analytical solutions of moving boundary problems”, Moving Boundary Problems, eds. D. G. Wilson, A. D. Solomon and P. T. Boggs, Academic Press, New York, 1978, 129–145 | MR
[3] Axford R., Differential equations invariant urber two-parameter Lie groups with applications to non-linear diffusion, Los Alamos Technical Reports, Rept. no. LA-4517, 1970, 39 pp. https://fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00387291.html
[4] Kalman R. E., Bucy R. S., “New results in linear filtering and prediction theory”, J. Basic Eng., 83:1 (1961), 95–108 | DOI | MR
[5] Shi M., “On the solution of a one-dimensional Riccati equation related to risk-sencitive portfolio optimization problem”, Rep. Fac. Sci. Engrg. Saga. Univ. Math., 34:1 (2005), 17–24 | MR | Zbl
[6] Orlov V. N., Kovalchuk O. A., “Mathematical problems of reliability assurance the building constructions”, E3S Web Conf., 97 (2019), 03031 | DOI
[7] Orlov V. N., “Features of mathematical modelling in the analysis of console-type structures”, E3S Web Conf., 97 (2019), 03036 | DOI
[8] Golubev V. V., Lektsii po analiticheskoi teorii differentsial'nykh uravnenii [Lectures on analytical theory of differential equations], GITL, Moscow, Leningrad, 1950, 436 pp. (In Russian) | MR
[9] Orlov V. N., “On the approximate solution of first Painlevé equation”, Vestnik KGTU im. A.N. Tupoleva, 2008, no. 2, 42–46 (In Russian)
[10] Orlov V. N., “Investigation of approximated solution of Abele equation in the neighborhood of variable exceptional point”, Herald of the Bauman Moscow State Technical University, Ser. Natural Sciences, 2009, no. 4(35), 102–108 (In Russian)
[11] Orlov V. N., “On the one method of approximate solution of matrix Riccati differential equations”, Aerospace MAI Journal, 15:5 (2008), 128–135 (In Russian)
[12] Orlov V. N., Kovalchuk O. A., “Mathematical modeling of complex structures and nonlinear differential equations with movable points”, IOP Conf. Ser.: Mater. Sci. Eng., 456 (2018), 012122 | DOI
[13] Orlov V. N., Kovalchuk O. A, Linnik E. P., Linnik I. I., “Research into a class of third-order nonlinear differential equations in the domain of analyticity”, Herald of the Bauman Moscow State Technical University, Ser. Natural Sciences, 2018, no. 4(79), 24–35 (In Russian) | DOI
[14] Orlov V. N., Leontieva T. Yu., “Construction of the approximate solution of a second-order nonlinear differential equation in the neighborhood of a movable singular point in the complex domain”, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2014, no. 4(22), 157–166 (In Russian)