The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 163-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the Navier–Stokes equations, unsteady axisymmetric flows of a homogeneous viscous incompressible fluid, in which the axial and circumferential velocities depend only on radius and time are considered, and the radial velocity is zero. It is shown that the velocity of such flows is the sum of the velocities of two flows of a viscous incompressible fluid: axial flow (radial and circumferential velocities are zero) and circumferential flow (radial and axial velocities are zero). Axial and circumferential movements occur independently, without exerting any mutual influence. This allows us to split the boundary value problems for the type of flows under consideration containing three unknown functions (pressure, circumferential and axial velocities) into two problems, each of which contains two unknown functions (pressure and one of the velocity components). In this case, the sum of pressures of the axial and circumferential flow will be the pressure of the initial flow. The discovered possibility of splitting allows using known solutions to replenish the “reserves” of axial and circumferential exact solutions. These solutions, in its turn, can be summed in various combinations and, as a result, give the velocities and pressures of new exact solutions of the Navier–Stokes equations.
Mots-clés : viscous incompressible fluid, exact solutions.
Keywords: splitting of the Navier–Stokes equations
@article{VSGTU_2020_24_1_a8,
     author = {G. B. Sizykh},
     title = {The splitting of {Navier{\textendash}Stokes} equations for~a~class of~axisymmetric flows},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/}
}
TY  - JOUR
AU  - G. B. Sizykh
TI  - The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 163
EP  - 173
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/
LA  - ru
ID  - VSGTU_2020_24_1_a8
ER  - 
%0 Journal Article
%A G. B. Sizykh
%T The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 163-173
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/
%G ru
%F VSGTU_2020_24_1_a8
G. B. Sizykh. The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 163-173. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/

[1] Drazin P. G., Riley N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge Univ. Press, Cambridge, 2006, x+196 pp. | DOI | MR | Zbl

[2] Pukhnachev V V., “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 2006, no. 6, 3–76 (In Russian)

[3] Berker R., Sur quelques cas d'intégration des équations du movement d'un fluide visqueux incompressible, Imprimerie A. Taffin–Lefort, Paris–Lille, 1936 http://eudml.org/doc/192863 | MR

[4] Neményi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, Adv. Appl. Mech., 2 (1951), 123–151 | DOI | MR | Zbl

[5] Troshin A.I., Vlasenko V. V, Wolkov A. V., “Selection of viscous terms approximation in discontinuous galerkin method”, TsAGI Science Journal, 44:3 (2013), 327–354 | DOI

[6] Golubkin V. N., Markov V. V., Sizykh G. B., “The integral invariant of the equations of motion of viscous gas”, J. Appl. Math. Mech., 79:6 (2015), 566–571 | DOI | MR | Zbl

[7] Vyshinsky V. V., Sizykh G. B., “Verification of the calculation of stationary subsonic flows and presentation of results”, Intern. Conf. on 50 years of the development of grid-characteristic method. GCM50 2018, Smart Modeling for Engineering Systems, 133, 2019, 228–235 | DOI | MR

[8] Vyshinsky V. V., Sizykh G. B., “The verification of the calculation of stationary subsonic flows and the presentation of the results”, Math. Models Comput. Simul., 11:1 (2019), 97–106 | DOI | MR

[9] Petrov A. G., “Exact and asymptotic solutions of the Navier-Stokes equations in a fluid layer between plates approaching and moving apart from one another”, Fluid Dyn., 49:2 (2014), 174–187 | DOI | MR | Zbl

[10] Aristov S. N., Knyazev D. V., “Three-dimensional viscous jet flow with plane free boundaries”, Fluid Dyn., 52:2 (2017), 215–218 | DOI | DOI | MR | Zbl

[11] Kotsur O. S., “On the existence of local formulae of the transfer velocity of local tubes that conserve their strengths”, Trudy MFTI, 11:1 (2019), 76–85 (In Russian)

[12] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flows”, Fluid Dyn., 54:3 (2019), 1038–1042 | DOI | DOI | MR

[13] Kumar M., Kumar R., “On some new exact solutions of incompressible steady state Navier–Stokes equations”, Meccanica, 49:2 (2014), 335–345 | DOI | MR | Zbl

[14] Artyshev S. G., “The description of several plane rotating flows of an incompressible fluid using cylindrical functions”, J. Appl. Math. Mech., 79:2 (2015), 159–163 | DOI | MR | Zbl

[15] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | MR | Zbl

[16] Kovalev V. P., Prosviryakov E. Yu., Sisykh G. B., “Obtaining examples of exact solutions to Navier–Stokes equations for helical flows by method of summing velocities”, Trudy MFTI, 9:1 (2017), 71–88 (In Russian)

[17] Weidman P. D., Mansur S., Ishak A., “Biorthogonal stretching and shearing of an impermeable surface in a uniformly rotating fluid system”, Meccanica, 52:7 (2017), 1515–1525 | DOI | MR | Zbl

[18] Vereshchagin V. P., Subbotin Yu. N., Chernykh N. I., “On the mechanics of helical flows in an ideal incompressible nonviscous continuous medium”, Proc. Steklov Inst. Math., 284 (2014), 159–174 | DOI | MR

[19] Vereshchagin V. P., Subbotin Yu. N., Chernykh N. I., “Some solutions of continuum equations for an incompressible viscous medium”, Proc. Steklov Inst. Math., 287 (2014), 208–223 | DOI | MR

[20] Poiseuille J.-L.-M., Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, Imprimerie Royale, Paris, 1844

[21] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 2000, xviii+615 pp. | DOI | MR

[22] Strakhovich K. I., Mekhanika viazkoi zhidkosti. I. Obshchaia chast' [Mechanics of a Viscous Fluids. I. General Part], Leningrad State Univ., Leningrad, 1940, 201 pp. (In Russian)

[23] Szymánski P., “Quelques solutions exactes des équations d'hydrodynamique du fluide visqueux dans le cas d'un tube cylindrique”, J. Math. Pures Appl., 11 (1932), 67–108 http://eudml.org/doc/234063