Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a8, author = {G. B. Sizykh}, title = {The splitting of {Navier{\textendash}Stokes} equations for~a~class of~axisymmetric flows}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {163--173}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/} }
TY - JOUR AU - G. B. Sizykh TI - The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 163 EP - 173 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/ LA - ru ID - VSGTU_2020_24_1_a8 ER -
%0 Journal Article %A G. B. Sizykh %T The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 163-173 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/ %G ru %F VSGTU_2020_24_1_a8
G. B. Sizykh. The splitting of Navier–Stokes equations for~a~class of~axisymmetric flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 163-173. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a8/
[1] Drazin P. G., Riley N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, London Mathematical Society Lecture Note Series, 334, Cambridge Univ. Press, Cambridge, 2006, x+196 pp. | DOI | MR | Zbl
[2] Pukhnachev V V., “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 2006, no. 6, 3–76 (In Russian)
[3] Berker R., Sur quelques cas d'intégration des équations du movement d'un fluide visqueux incompressible, Imprimerie A. Taffin–Lefort, Paris–Lille, 1936 http://eudml.org/doc/192863 | MR
[4] Neményi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, Adv. Appl. Mech., 2 (1951), 123–151 | DOI | MR | Zbl
[5] Troshin A.I., Vlasenko V. V, Wolkov A. V., “Selection of viscous terms approximation in discontinuous galerkin method”, TsAGI Science Journal, 44:3 (2013), 327–354 | DOI
[6] Golubkin V. N., Markov V. V., Sizykh G. B., “The integral invariant of the equations of motion of viscous gas”, J. Appl. Math. Mech., 79:6 (2015), 566–571 | DOI | MR | Zbl
[7] Vyshinsky V. V., Sizykh G. B., “Verification of the calculation of stationary subsonic flows and presentation of results”, Intern. Conf. on 50 years of the development of grid-characteristic method. GCM50 2018, Smart Modeling for Engineering Systems, 133, 2019, 228–235 | DOI | MR
[8] Vyshinsky V. V., Sizykh G. B., “The verification of the calculation of stationary subsonic flows and the presentation of the results”, Math. Models Comput. Simul., 11:1 (2019), 97–106 | DOI | MR
[9] Petrov A. G., “Exact and asymptotic solutions of the Navier-Stokes equations in a fluid layer between plates approaching and moving apart from one another”, Fluid Dyn., 49:2 (2014), 174–187 | DOI | MR | Zbl
[10] Aristov S. N., Knyazev D. V., “Three-dimensional viscous jet flow with plane free boundaries”, Fluid Dyn., 52:2 (2017), 215–218 | DOI | DOI | MR | Zbl
[11] Kotsur O. S., “On the existence of local formulae of the transfer velocity of local tubes that conserve their strengths”, Trudy MFTI, 11:1 (2019), 76–85 (In Russian)
[12] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flows”, Fluid Dyn., 54:3 (2019), 1038–1042 | DOI | DOI | MR
[13] Kumar M., Kumar R., “On some new exact solutions of incompressible steady state Navier–Stokes equations”, Meccanica, 49:2 (2014), 335–345 | DOI | MR | Zbl
[14] Artyshev S. G., “The description of several plane rotating flows of an incompressible fluid using cylindrical functions”, J. Appl. Math. Mech., 79:2 (2015), 159–163 | DOI | MR | Zbl
[15] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | MR | Zbl
[16] Kovalev V. P., Prosviryakov E. Yu., Sisykh G. B., “Obtaining examples of exact solutions to Navier–Stokes equations for helical flows by method of summing velocities”, Trudy MFTI, 9:1 (2017), 71–88 (In Russian)
[17] Weidman P. D., Mansur S., Ishak A., “Biorthogonal stretching and shearing of an impermeable surface in a uniformly rotating fluid system”, Meccanica, 52:7 (2017), 1515–1525 | DOI | MR | Zbl
[18] Vereshchagin V. P., Subbotin Yu. N., Chernykh N. I., “On the mechanics of helical flows in an ideal incompressible nonviscous continuous medium”, Proc. Steklov Inst. Math., 284 (2014), 159–174 | DOI | MR
[19] Vereshchagin V. P., Subbotin Yu. N., Chernykh N. I., “Some solutions of continuum equations for an incompressible viscous medium”, Proc. Steklov Inst. Math., 287 (2014), 208–223 | DOI | MR
[20] Poiseuille J.-L.-M., Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, Imprimerie Royale, Paris, 1844
[21] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 2000, xviii+615 pp. | DOI | MR
[22] Strakhovich K. I., Mekhanika viazkoi zhidkosti. I. Obshchaia chast' [Mechanics of a Viscous Fluids. I. General Part], Leningrad State Univ., Leningrad, 1940, 201 pp. (In Russian)
[23] Szymánski P., “Quelques solutions exactes des équations d'hydrodynamique du fluide visqueux dans le cas d'un tube cylindrique”, J. Math. Pures Appl., 11 (1932), 67–108 http://eudml.org/doc/234063