Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a6, author = {R. V. Zhalnin and V. F. Masyagin and E. E. Peskova and V. F. Tishkin}, title = {A priori error estimates of the local discontinuous {Galerkin} method on staggered grids}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {116--136}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a6/} }
TY - JOUR AU - R. V. Zhalnin AU - V. F. Masyagin AU - E. E. Peskova AU - V. F. Tishkin TI - A priori error estimates of the local discontinuous Galerkin method on staggered grids JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 116 EP - 136 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a6/ LA - ru ID - VSGTU_2020_24_1_a6 ER -
%0 Journal Article %A R. V. Zhalnin %A V. F. Masyagin %A E. E. Peskova %A V. F. Tishkin %T A priori error estimates of the local discontinuous Galerkin method on staggered grids %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 116-136 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a6/ %G ru %F VSGTU_2020_24_1_a6
R. V. Zhalnin; V. F. Masyagin; E. E. Peskova; V. F. Tishkin. A priori error estimates of the local discontinuous Galerkin method on staggered grids. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 116-136. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a6/
[1] Masyagin V. F., Zhalnin R. V., Tishkin V. F., “Discontinuous finite-element Galerkin method for numerical solution of two-dimensional diffusion problems on unstructured grids”, Zhurnal SVMO, 15:2 (2013), 59–65 (In Russian) | Zbl
[2] Zhalnin R. V., Ladonkina M. E., Masyagin V. F., Tishkin V. F., “Discontinuous finite-element Galerkin method for numerical solution of two-dimensional diffusion problems on unstructured grids”, Zhurnal SVMO, 16:2 (2014), 7–13 (In Russian) | Zbl
[3] Zhalnin R. V., Ladonkina M. E., Masyagin V. F., Tishkin V. F., “Solution of 3D heat conduction equations using the discontinuous Galerkin method on unstructured grids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015), 523–533 (In Russian) | DOI | Zbl
[4] Zhalnin R. V., Ladonkina M. E., Masyagin V. F., Tishkin V. F., “Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids”, Comput. Math. Math. Phys., 56:6 (2016), 977–986 | DOI | DOI | Zbl
[5] Zhalnin R. V., Ladonkina M. E., Masyagin V. F., Tishkin V. F., “Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:3 (2016), 144–151 (In Russian) | DOI | Zbl
[6] Zhalnin R. V., Masyagin V. F., “Galerkin method with discontinuous basis functions on staggered grips a priory estimates for the homogeneous Dirichlet problem”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:2 (2018), 29–43 (In Russian) | DOI | Zbl
[7] Cockburn B., Shu C.-W., “The local discontinuous Galerkin finite element method for convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | Zbl
[8] Bassi F., Rebay S., “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations”, J. Comp. Phys., 131:2 (1997), 267–279 | DOI | Zbl
[9] Cockburn B., Hou S., Shu C.-W., “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case”, Math. Comp., 54:190 (1990), 545–581 | DOI | Zbl
[10] Cockburn B., Lin S.-Y., Shu C.-W., “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems”, J. Comput. Phys., 84:1 (1989), 90–113 | DOI | Zbl
[11] Cockburn B., Shu C.-W., “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework”, Math. Comp., 52:186 (1989), 411–435 | DOI | Zbl
[12] Cockburn B., Lin S.-Y., Shu C.-W., “The Runge–Kutta local projection $P^1$-discontinuous Galerkin method for scalar conservation laws”, ESAIM: Mathematical Modelling and Numerical Analysis, 25:3 (1991), 337–361 | DOI | Zbl
[13] Cockburn B., Shu C.-W., “The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems”, J. Comput. Phys., 141:2 (1998), 199–224 | DOI | Zbl
[14] Ciarlet P. G., The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, SIAM, Philadelphia, 2002, xxiii+529 pp. | DOI
[15] Castillo P., Cockburn B., Perugia I., Schötzau D., “An a priory error analysis of the local discontinuous Galerkin method for elliptic problems”, SIAM J. Numer. Anal., 38:5 (2000), 1676–1706 | DOI | Zbl
[16] Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 1997, x+302 pp. | DOI | Zbl
[17] Rivière B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers in Applied Mathematics, SIAM, Philadelphia, 2008, xxii+178 pp. | DOI | Zbl
[18] Pany A., Yadav S., “An $hp$-local discontinuous Galerkin method for parabolic integro-differential equations”, J. Sci. Comput., 46:1 (2011), 71–99 | DOI
[19] Babuška I., Suri M., “The $h-p$ version of the finite element method with quasiuniform meshes”, ESAIM: Mathematical Modelling and Numerical Analysis, 21:2 (1987), 199–238 | DOI | Zbl
[20] Dautov R. Z., Fedotov E. M., “Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems”, Comput. Math. Math. Phys., 54:3 (2014), 474–490 | DOI | DOI | Zbl