Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a5, author = {S. A. Bochkarev and S. V. Lekomtsev and A. N. Senin}, title = {Numerical modeling of eccentric cylindrical shells partially filled with a fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {95--115}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a5/} }
TY - JOUR AU - S. A. Bochkarev AU - S. V. Lekomtsev AU - A. N. Senin TI - Numerical modeling of eccentric cylindrical shells partially filled with a fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 95 EP - 115 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a5/ LA - ru ID - VSGTU_2020_24_1_a5 ER -
%0 Journal Article %A S. A. Bochkarev %A S. V. Lekomtsev %A A. N. Senin %T Numerical modeling of eccentric cylindrical shells partially filled with a fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 95-115 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a5/ %G ru %F VSGTU_2020_24_1_a5
S. A. Bochkarev; S. V. Lekomtsev; A. N. Senin. Numerical modeling of eccentric cylindrical shells partially filled with a fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 95-115. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a5/
[1] Païdoussis M. P., Fluid-structure Interactions: Slender Structures and Axial Flow, v. 2, Academic Press, London, 2016, xviii+923 pp.
[2] Bochkarev S. A., Lekomtsev S. V., Senin A. N., “Analysis of spatial vibrations of coaxial cylindrical shells partially filled with a fluid”, Comput. Continuum Mech., 11:4 (2018), 448–462 (In Russian) | DOI
[3] Bochkarev S. A., Lekomtsev S. V., Matveenko V. P., Senin A. N., “Hydroelastic stability of partially filled coaxial cylindrical shells”, Acta Mech., 230:11 (2019), 3845–3860 | DOI | MR
[4] Kozarov M., Mladenov K., “Hydroelastic stability of coaxial cylindrical shells”, Soviet Appl. Mech., 17:5 (1981), 449–456 | DOI | Zbl
[5] Païdoussis M. P., Chan S. P., Misra A. K., “Dynamics and stability of coaxial cylindrical shells containing flowing fluid”, J. Sound Vib., 97:2 (1984), 201–235 | DOI
[6] Païdoussis M. P., Nguyen V. B., Misra A. K., “A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid”, J. Fluids Struct., 5:2 (1991), 127–164 | DOI
[7] El Chebair A., Païdoussis M. P., Misra A. K., “Experimental study of annular-flow-induced instabilities of cylindrical shells”, J. Fluids Struct., 3:4 (1989), 349–364 | DOI
[8] Horác̆ek J., “Approximate theory of annular flow-induced instabilities of cylindrical shells”, J. Fluids Struct., 7:2 (1993), 123–135 | DOI
[9] Bochkarev S. A., Lekomtsev S. V., “Investigation of boundary conditions influence on stability of coaxial cylindrical shells interacting with flowing fluid”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(16), 88–101 (In Russian) | DOI | Zbl
[10] Bochkarev S. A., Lekomtsev S. V., Matveenko V. P., “Parametric investigation of the stability of coaxial cylindrical shells containing flowing fluid”, Eur. J. Mech. A Solids, 47 (2014), 174–181 | DOI | MR | Zbl
[11] Yeh T. T., Chen S. S., “Dynamics of a cylindrical shell system coupled by viscous fluid”, J. Acoust. Soc. Am., 62:2 (1977), 262–270 | DOI | Zbl
[12] Yeh T. T., Chen S. S., “The effect of fluid viscosity on coupled tube/fluid vibrations”, J. Sound Vib., 59:3 (1978), 453–467 | DOI
[13] El Chebair A., Misra A. K., Païdoussis M. P., “Theoretical study of the effect of unsteady viscous forces on inner- and annular-flow-induced instabilities of cylindrical shells”, J. Sound Vib., 138:3 (1990), 457–478 | DOI
[14] Païdoussis M. P., Misra A. K., Chan S. P., “Dynamics and stability of coaxial cylindrical shells conveying viscous fluid”, J. Appl. Mech, 52:2 (1985), 389–396 | DOI
[15] Païdoussis M. P., Misra A. K., Nguyen V. B., “Internal- and annular-flow-induced instabilities of a clamped-clamped or cantilevered cylindrical shell in a coaxial conduit: the effects of system parameters”, J. Sound Vib., 159:2 (1992), 193–205 | DOI
[16] Nguyen V. B., Païdoussis M. P., Misra A. K., “A CFD-based model for the study of the stability of cantilevered coaxial cylindrical shells conveying viscous fluid”, J. Sound Vib., 176:1 (1994), 105–125 | DOI | Zbl
[17] Nguyen V. B., Païdoussis M. P., Misra A. K., “An experimental study of the stability of cantilevered coaxial cylindrical shells conveying fluid”, J. Fluids Struct., 7:8 (1993), 913–930 | DOI
[18] Amabili M., Garziera R., “Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. Part II: Shells containing or immersed in axial flow”, J. Fluids Struct., 16:1 (2002), 31–51 | DOI
[19] Amabili M., Garziera R., “Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. Part III: Steady viscous effects on shells conveying fluid”, J. Fluids Struct., 16:6 (2002), 795–809 | DOI
[20] Bochkarev S. A., Matveenko V. P., “The dynamic behaviour of elastic coaxial cylindrical shells conveying fluid”, J. Appl. Math. Mech., 74:4 (2010), 467–474 | DOI | MR | Zbl
[21] Bochkarev S. A., Matveenko V. P., “Stability analysis of loaded coaxial cylindrical shells with internal fluid flow”, Mech. Solids, 45:6 (2010), 789–802 | DOI
[22] Bochkarev S. A., Matveenko V. P., “Numerical analysis of coaxial cylindrical shells conveying fluid”, Topical Problems in Solid and Fluid Mechanics, eds. A. V. Manzhirov, N. K. Gupta, D. A. Indeitsev, Elit Publ. House Pvt Ltd., Delhi, 2011, 160–177
[23] Ning W. B., Wang D. Z., Zhang J. G., “Dynamics and stability of a cylindrical shell subjected to annular flow including temperature effects”, Arch. Appl. Mech., 86:4 (2016), 643–656 | DOI | MR
[24] Ning W. B., Wang D. Z., “Dynamic and stability response of a cylindrical shell subjected to viscous annular flow and thermal load”, Int. J. Str. Stab. Dyn., 16:10 (2016), 1550072 | DOI | MR | Zbl
[25] Kalinina A., Kondratov D., Kondratova Y., Mogilevich L., Popov V., “Investigation of hydroelasticity coaxial geometrically irregular and regular shells under vibration”, Recent Research in Control Engineering and Decision Making, ICIT 2019, Studies in Systems, Decision and Control, 199, eds. O. Dolinina, A. Brovko, V. Pechenkin, A. Lvov, V. Zhmud, V. Kreinovich, Springer, Cham, 2019, 125–137 | DOI
[26] Buivol B. N., Guz A. N., “Oscillations of two cylindrical eccentrically arranged shells in a stream of inviscid liquid”, Dokl. Akad. Nauk Ukr. SSR, 1966, no. 11, 1412–1415 (In Russian)
[27] Chung H., Chen S.-S., “Vibration of a group of circular cylinders in a confined fluid”, J. Appl. Mech., 44:2 (1977), 213–217 | DOI | Zbl
[28] Wauer J., “Finite oscillations of a cylinder in a coaxial duct subjected to annular compressible flow”, Flow Turbul. Combus., 61:1–4 (1998), 161–177 | DOI
[29] Jeong K.-H., “Dynamics of a concentrically or eccentrically submerged circular cylindrical shell in a fluid-filled container”, J. Sound Vib., 224:4 (1999), 709–732 | DOI
[30] Jeong K.-H., Lee G.-M., Chang M.-H., “Free vibration analysis of a cylindrical shell eccentrically coupled with a fluid-filled vessel”, Comput. Struct., 79:16 (2001), 1517–1524 | DOI
[31] Bochkarev S. A., Lekomtsev S. V., Senin A. N., “Analysis of spatial vibrations of piezoceramic eccentric cylindrical shells interacting with an annular fluid layer”, Frattura Integ. Strutt., 49 (2019), 814–830 | DOI
[32] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill, New York, 1971, xiv+521 pp. | MR | Zbl
[33] Reddy J. N., An introduction to nonlinear finite element analysis, Oxford University Press, Oxford, 2014, xxxi+687 pp. | MR | Zbl
[34] Ilgamov M. A., Kolebaniia uprugikh obolochek, soderzhashchikh zhidkost’ i gaz [Oscillations of elastic shells containing liqiud and gas], Nauka, Moscow, 1969, 184 pp. (In Russian) | Zbl
[35] Bochkarev S. A., Matveenko V. P., “Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid”, Mech. Solids, 43:3 (2010), 477–486 | DOI | MR
[36] Amabili M., “Free vibration of partially filled, horizontal cylindrical shells”, J. Sound Vib., 191:5 (1996), 757–780 | DOI
[37] Lehoucq R. B., Sorensen D. C., “Deflation techniques for an implicitly restarted Arnoldi iteration”, SIAM J. Matrix Anal. Appl., 17:4 (1996), 789–821 | DOI | MR | Zbl
[38] ANSYS mechanical APDL theory reference, Release 18.2, ANSYS, Canonsburg, Pa, 2017