Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a4, author = {A. N. Prokudin}, title = {Elastic-plastic analysis of rotating solid shaft by maximum}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {74--94}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a4/} }
TY - JOUR AU - A. N. Prokudin TI - Elastic-plastic analysis of rotating solid shaft by maximum JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 74 EP - 94 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a4/ LA - ru ID - VSGTU_2020_24_1_a4 ER -
%0 Journal Article %A A. N. Prokudin %T Elastic-plastic analysis of rotating solid shaft by maximum %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 74-94 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a4/ %G ru %F VSGTU_2020_24_1_a4
A. N. Prokudin. Elastic-plastic analysis of rotating solid shaft by maximum. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 74-94. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a4/
[1] Sadd M. H., Elasticity: Theory, Applications, and Numerics, Elsevier, Academic Press, Amsterdam, New York, 2014
[2] Timoshenko S., Theory of Elasticity, McGraw Hill, New York, 2010
[3] Nadai A., Theory of Flow and Fracture of Solids, v. 1, McGraw Hill, New York, 1950
[4] Hodge P. G., Balaban M., “Elastic—plastic analysis of a rotating cylinder”, Int J. Mech. Sci., 4:6 (1962), 465–476 | DOI
[5] Gamer U., “On the applicability of Tresca's yield condition to the rotating solid shaft”, Rev. Roum. Sci. Techn.-Méc. Appl., 29:1 (1984), 27–30 | Zbl
[6] Gamer U., Sayir M., “Elastic-plastic stress distribution in a rotating solid shaft”, Z. angew. Math. Phys., 35:5 (1984), 601–617 | DOI | Zbl
[7] Gamer U., Mack M., Varga I., “Rotating elastic-plastic solid shaft with fixed ends”, Int. J. Eng. Sci., 35:3 (1997), 253–267 | DOI | Zbl
[8] Lindner T., Mack W., “Residual stresses in an elastic-plastic solid shaft with fixed ends after previous rotation”, Z. angew. Math. Mech., 78:2 (1998), 75–86 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[9] Mack W., “The rotating elastic-plastic solid shaft with free ends”, Tech. Mech., 12:2 (1991), 119–124
[10] Gamer U., Lance R. H., “Stress distribution in a rotating elastic-plastic tube”, Acta Mechanica, 50 (1983), 1–8 | DOI | Zbl
[11] Mack W., “Rotating elastic-plastic tube with free ends”, Int. J. Solids Str., 27:11 (1991), 1461–1476 | DOI | Zbl
[12] Eraslan A. N., “On the linearly hardening rotating solid shaft”, Eur. J. Mech.–A/Solids, 22:2 (2003), 295–307 | DOI | Zbl
[13] Eraslan A. N., “Von Mises' yield criterion and nonlinearly hardening rotating shafts”, Acta Mechanica, 168 (2004), 129–144 | DOI | Zbl
[14] Eraslan A. N. and T. Akis, “On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems”, Acta Mechanica, 181 (2006), 43–63 | DOI | Zbl
[15] Akis T., Eraslan A. N., “Exact solution of rotating FGM shaft problem in the elastoplastic state of stress”, Arch. Appl. Mech., 77 (2007), 745–765 | DOI | Zbl
[16] Argeso H., Eraslan A. N., “A computational study on functionally graded rotating solid shafts”, Int. J. Comput. Methods Eng. Sci. Mech., 8:6 (2007), 391–399 | DOI | Zbl
[17] Eraslan A. N., Arslan E., “Plane strain analytical solutions to rotating partially plastic graded hollow shafts”, Turkish J. Eng. Env. Sci., 31:5 (2007), 273–287
[18] Nejad M.Z., Fatehi P., “Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials”, Int. J. Eng. Sci., 86 (2015), 26–43 | DOI | Zbl
[19] Schmidt R., “Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet”, Ing. Arch., 3 (1932), 215–235 | DOI | Zbl
[20] Ishlinsky A. Yu., “Hypothesis of strength of shape change”, Uchenye zapiski MGU. Mekhanika, 1940, no. 46, 117–124 (In Russian)
[21] Hill R., “On the inhomogeneous deformation of a plastic lamina in a compression test”, Phil. Mag, Ser. 7, 41:319 (1950), 733–744 | DOI | Zbl
[22] Ivlev D. D., “On the development of a theory of ideal plasticity”, J. Appl. Math. Mech., 22:6 (1958), 1221–1230 | DOI | Zbl
[23] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaia teoriia plastichnosti [Mathematical Theory of Plasticity], Fizmatlit, Moscow, 2003, 704 pp. (In Russian)
[24] Burenin A. A., Tkacheva A. V., Shcherbatyuk G. A., “On the calculation of unsteady thermal stresses in elastoplastic solids”, Computational Continuum Mechanics, 10:3 (2017), 245–259 (In Russian) | DOI
[25] Burenin A. A., Tkacheva A. V., Shcherbatyuk G. A., “The use of piecewise linear plastic potentials in the nonstationary theory of temperature stresses”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018), 23–39 (In Russian) | DOI | Zbl
[26] Burenin A. A., Kaing M., Tkacheva A. V., “To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies”, Dal'nevost. Mat. Zh., 18:2 (2018), 131–146 (In Russian) | Zbl
[27] Cai Q., Pang M., Zhang Y.-Q., Liu X., “Elastic-plastic stress distribution of rotating annular disc based on twin-shear stress yield criterion”, J. Zhejiang Univ., Eng. Sci., 42:9 (2008), 1540–1544 | DOI
[28] Zhao D.-W., Xie Y.-J., Liu X.-H., Wang G.-D., “Three-dimensional analysis of rolling by twin shear stress yield criterion”, J. Iron Steel Res. Int., 13 (2006), 21–26 | DOI
[29] Zhu X., Pang M., Zhang Y., “Estimation of burst pressure of pipeline using twin-shear stress yield criterion”, Chinese J. Appl. Mech., 28:2 (2011), 135–138