Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a3, author = {V. B. Penkov and L. Levina and O. S. Novikova}, title = {Analytical solution of elastostatic problems of a simply connected body loaded with nonconservative volume forces: theoretical and algorithmic support}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {56--73}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a3/} }
TY - JOUR AU - V. B. Penkov AU - L. Levina AU - O. S. Novikova TI - Analytical solution of elastostatic problems of a simply connected body loaded with nonconservative volume forces: theoretical and algorithmic support JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 56 EP - 73 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a3/ LA - ru ID - VSGTU_2020_24_1_a3 ER -
%0 Journal Article %A V. B. Penkov %A L. Levina %A O. S. Novikova %T Analytical solution of elastostatic problems of a simply connected body loaded with nonconservative volume forces: theoretical and algorithmic support %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 56-73 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a3/ %G ru %F VSGTU_2020_24_1_a3
V. B. Penkov; L. Levina; O. S. Novikova. Analytical solution of elastostatic problems of a simply connected body loaded with nonconservative volume forces: theoretical and algorithmic support. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 56-73. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a3/
[1] Truesdell C., A first course in rational continuum mechanics. Vol. 1: General concepts, Pure and Applied Mathematics, 71, Academic Press, New York, San Francisco, London, 1977, xxiii+280 pp. | Zbl
[2] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a deformable rigid body], Nauka, Moscow, 1988, 712 pp. (In Russian) | Zbl
[3] Lurie A. I., Theory of Elasticity, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2005, iv+1050 pp. | DOI | Zbl
[4] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti [Some basic problems of the mathematical theory of elasticity], Nauka, Moscow, 1966, 707 pp. (In Russian) | MR | Zbl
[5] Green A. E., Zerna W., Theoretical Elasticity, Dover Publications, New York, 1992, xvi+457 pp. | Zbl
[6] Arfken G. B., Weber H. J., Mathematical Methods for Physicists, Elsiver/Academic Press, Amsterdam, 2005, xii+1182 pp. | Zbl
[7] Khayrullin F.S., Sahbiev O. M., “A method of determination of stress-strain state of 3d structures of complex form”, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2016, no. 1, 36–42 (In Russian)
[8] Struzhanov V. V., “On the solution of boundary value problems of the theory of elasticity by the method of orthogonal projections”, Matematicheskoe modelirovanie sistem i protsessov, 2004, no. 12, 89–100 (In Russian)
[9] Struzhanov V. V., “On one iteration method of stress calculation in non-simply connectedsolids”, Computational Technologies, 11:6 (2006), 118–124 (In Russian) | Zbl
[10] Penkov V. B., Satalkina L. V., Metod granichnykh sostoyaniy s vozmushcheniyami: neodnorodnyye i nelineynyye zadachi teorii uprugosti i termouprugosti, LAP LAMBERT Academic Publ., Saarbrücken, 2012, 108 pp. (In Russian)
[11] Penkov V. B., Satalkina L. V., Shulmin A. S., “The use of the method of boundary states to analyse an elastic medium with cavities and inclusions”, J. Appl. Math. Mech., 78:4 (2014), 384–394 | DOI | Zbl
[12] Firsanov V. V., “Mathematical model of the stress-strain state of a beam with a variable section with an effect of “Boundary layer””, Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2015, no. 6, 63–69 (In Russian)
[13] Voloshin A. G., Stupina M. V., “System for calculating of the equilibrium state of an elastic medium weakened by a plane symmetric crack”, Inzhenernyi vestnik Dona, 2008, no. 2, 4–12 (In Russian)
[14] Mikishanina E. A., Terentev A. G., “On determination of the stress state of an elastic-porous medium”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:2 (2017), 204–215 (In Russian)
[15] Ivanshin P. N., “Spline-interpolation solution of elasticity theory problems”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015), 24–41 (In Russian)
[16] Levina L. V., Novikova O. S., Penkov V. B., “Full-parameter solution to the problemof the theory of elasticity of a simply connected bounded body”, Vestnik Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 2, 16–24 (In Russian)
[17] Sachdeva C., Padhee S. S., “Functionally graded cylinders: Asymptotically exact analytical formulations”, Applied Mathematical Modelling, 54 (2017), 782–802 | DOI
[18] Neuber H., “Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel”, ZAMM, 14:4 (1934), 203–212 | DOI | Zbl
[19] Agahanov E. K., Agahanov M. K., “About the possibility of the use of the effect ecuivalense in analytic solutions of the elastisity theory”, Vestnik MGSU, 3:4 (2010), 144–148 (In Russian)
[20] Matveenko V. P., Schevelev N. A., “Analytical study of the stress-strain state of rotation bodies under the action of mass forces”, Stress-strain State of Structures Made of Elastic and Viscoelastic Materials, Sverdlovsk, 1977, 54–60 (In Russian)
[21] Vestyak V. A., Tarlakovsky D. V., “Unsteady axisymmetric deformation of an elastic space with a spherical cavity under the action of bulk forces”, Moscow Univ. Mech. Bull., 71:4 (2016), 87–92 | DOI | Zbl
[22] Sharafutdinov G. Z., “Functions of a complex variable in problems in the theory of elasticity with mass forces”, J. Appl. Math. Mech., 73:1 (2009), 69–87 | DOI | Zbl
[23] Zaytsev A. V, Fukalov A. A., “Exact analytical solutions of equilibrium problems for elastic anisotropic bodies with central and axial symmetry, which are in the field of gravitational forces, and their applications to the problems of geomechanics”, Matemat. Model. Estestv. Nauk., 1 (2015), 141–144 (In Russian)
[24] Fukalov A. A., “Problems of elastic equilibrium of composite thick-walled transversely isotropic spheres under the action of mass forces and internal pressure, and their applications”, All-Russian Congr. Fundam. Probl. Theoret. Appl. Mech., 2015, 3951–3953, Kazan (In Russian)
[25] Igumnov L. A., Markov I. P., Pazin V. P., “Boundary-element analysis of boundary-value problems of 3d anisotropic elasticity”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2013, no. 1, 115–119 (In Russian)
[26] Korepanova T. O., Sevodina N. V., “A method and results of calculation of the nature of stress singularities in three-dimensional elasticity problems”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4, 1539–1541 (In Russian)
[27] Pikul V. V., “To anomalous deformation of solids”, Physical mesomechanics, 2013, no. 2, 93–100 (In Russian)
[28] Schwarz H. A., “Über einige Abbildungsaufgaben”, J. Reine Angew. Math., 70 (1869), 105–120 http://eudml.org/doc/148076
[29] Sedov L. I., Metody podobiya i razmernosti v mekhanike [Similarity and Dimensional Methods in Mechanics], Nauka, Moscow, 1977, 431 pp. (In Russian) | Zbl
[30] Penkov V. B., Ivanychev D. A., Novikova O. S., Levina L. V., “An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations”, J. Phys.: Conf. Ser., 973 (2018), 012015 | DOI
[31] Novikova O. S., Penkov V. B., Levina L. V., “Method of boundary states with the perturbation as a way of organizing full parametric analytical solution solving of the second basic problem of linear elastostatics”, Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2018, no. 2, 26–37 (In Russian)
[32] Levina L. V., Novikova O. S., Penkov V. B., Polikarpov M. V., “Optimization of lightweight fastening elements at avariation of geometrical parameters”, Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2017, no. 4, 45–51 (In Russian)