Integro-differential equations of the second boundary value problem of linear elasticity theory.
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 199-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In communication 1, the integro-differential equations of the second boundary value problem of the theory of elasticity for a homogeneous isotropic body were considered. The results obtained are extended to boundary value problems for the general case of an inhomogeneous anisotropic body. It is shown that the integro-differential equations found are also Fredholm type equations. The existence and uniqueness of their solution is proved, the conditions under which the solution can be found by the method of successive approximations are determined. An example of calculating the residual stresses in an inhomogeneous quenched cylinder is given.
Keywords: second boundary-value problem, inhomogeneous anisotropic body, integro-differential equation, spectral radius, successive approximation, second kind Fredholm equations, iteration convergence.
@article{VSGTU_2020_24_1_a11,
     author = {V. V. Struzhanov},
     title = {Integro-differential equations of the second boundary value problem of linear elasticity theory.},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {199--208},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a11/}
}
TY  - JOUR
AU  - V. V. Struzhanov
TI  - Integro-differential equations of the second boundary value problem of linear elasticity theory.
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 199
EP  - 208
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a11/
LA  - ru
ID  - VSGTU_2020_24_1_a11
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%T Integro-differential equations of the second boundary value problem of linear elasticity theory.
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 199-208
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a11/
%G ru
%F VSGTU_2020_24_1_a11
V. V. Struzhanov. Integro-differential equations of the second boundary value problem of linear elasticity theory.. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 199-208. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a11/

[1] Struzhanov V. V., “Integro-differential equations the second boundary value problem of linear elasticity theory. Message 1. Homogeneous isotropic body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017), 496–506 (In Russian) | DOI | Zbl

[2] Lurie A. I., Theory of Elasticity, Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg, 2005, 1050 pp | DOI

[3] Eliseev V. V., Mekhanika uprugikh tel [Mechanics of Elastic Bodies], SPbGPU, Saint-Petersburg, 2002, 341 pp. (In Russian)

[4] Timoshenko S. P., Goodier J. N., Theory of elasticity, Engineering Societies Monographs. International Student Edition, McGraw-Hill Book Comp., New York, 1970, xxiv+567 pp.

[5] Dimitrienko Yu. I., Tenzornoe ischislenie [Tensor Calculus], Vyssh. shk., Moscow, 2001, 575 pp. (In Russian)

[6] Ladyzhenskaia O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973, 576 pp. (In Russian) | MR

[7] Sobolev S. L., Nekotorye primeneniia funktsional'nogo analiza v matematicheskoi fizike [Some applications of functional analysis in mathematical physics], Nauka, Moscow, 1988, 334 pp. (In Russian) | MR

[8] Hahn H. G., Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, Leitfäden der Angewandten Mathematik und Mechanik, 62, B. G. Teubner, Stuttgart, 1985, 332 pp. | Zbl

[9] Korenev G. V., Tenzornoe ischislenie [Tensor Calculus], Mosk. Fiz.-Tekhn. Inst., Moscow, 2000, 240 pp. (In Russian)

[10] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki [Equations in partial derivatives of mathematical physics], Vyssh. shk., Moscow, 1970, 712 pp. (In Russian) | Zbl

[11] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike [Variational Methods in Mathematical Physics], Nauka, Moscow, 1970, 512 pp. (In Russian)

[12] Trenogin V. A., Funktsional'nyi analiz [Functional analysis], Nauka, Moscow, 1980, 496 pp. (In Russian)

[13] Functional analysis, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, ed. S. G. Krejn, Wolters-Noordhoff Publ., Groningen, Netherlands, 1972, xv+379 pp. | Zbl

[14] Lyusternik L. A., Sobolev V. I., Elementy funktsional'nogo analiza [Elements of Functional Analysis], Nauka, Moscow, 1965, 520 pp. (In Russian)

[15] Kantorovich L. V., Akilov G. P., Funktsional'nyi analiz [Functional Analysis], Nauka, Moscow, 1977, 741 pp. (In Russian)

[16] Krasnosel'sky M. A., Vainikko G. M., Zabreiko P. P., Rutitsky Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii [Approximate Solution of Operator Equations], Nauka, Moscow, 1969, 455 pp. (In Russian)

[17] Yuriev S. F., Udel'nye ob"emy faz v martensitnom prevrashchenii austenita [Specific Volumes of Phases in Martensite Transformation of Austenite], Metallurgizdat, Moscow, 1950, 48 pp. (In Russian)