The energy transfer velocity by a plane monochromatic
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 22-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary problems for the diffraction (tunneling) of a plane electromagnetic wave through a layer of matter with dielectric properties, as well as a quantum particle tunneling through a rectangular potential barrier are considered. It is shown that there are no superluminal motions, and the transit time is always longer when the wave passes the structure at the speed of light.
Keywords: energy velocity, tunneling time, frequency dispersion, Bohm–Wigner time, Hartman paradox.
@article{VSGTU_2020_24_1_a1,
     author = {M. V. Davidovich},
     title = {The energy transfer velocity by a plane monochromatic},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {22--40},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a1/}
}
TY  - JOUR
AU  - M. V. Davidovich
TI  - The energy transfer velocity by a plane monochromatic
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 22
EP  - 40
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a1/
LA  - ru
ID  - VSGTU_2020_24_1_a1
ER  - 
%0 Journal Article
%A M. V. Davidovich
%T The energy transfer velocity by a plane monochromatic
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 22-40
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a1/
%G ru
%F VSGTU_2020_24_1_a1
M. V. Davidovich. The energy transfer velocity by a plane monochromatic. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 22-40. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a1/

[1] Smith F. T., “Lifetime matrix in collision theory”, Phys. Rev., 118:6 (1960), 349–356 | DOI | MR | Zbl

[2] Hartman T. E., “Tunneling of a wave packet”, J. Appl. Phys., 33:12 (1962), 3427–3433 | DOI

[3] Fletcher J. R., “Time delay in tunnelling through a potential barrier”, J. Phys. C: Solid State Phys., 18:2 (1985), L55–L59 | DOI

[4] Büttiker M., Landauer R., “Traversal time for tunneling”, Phys. Rev. Lett., 49:23 (1982), 1739–1742 | DOI

[5] Büttiker M., “Larmor precession and the traversal time for tunneling”, Phys. Rev. B, 27:10 (1983), 6178–6188 | DOI

[6] Büttiker M., Landauer R. J., “Comment on ‘The quantum mechanical tunnelling time problem-revisited’”, J. Phys. C: Solid State Phys., 21:36 (1988), 6207–6213 | DOI

[7] Steinberg A. M., Kwiat P. G., Chiao R. Y., “Measurement of the single-photon tunneling time”, Phys. Rev. Lett., 71:5 (1993), 708–711 | DOI

[8] Chiao R. Y., “Superluminal (but causal) propagation of wavepackets in transparent media with inverted atomic populations”, Phys. Rev. A, 48:1 (1993), R34–R377 | DOI

[9] Hass K., Busch P., “Causality of superluminal barrier traversal”, Phys. Lett. A, 185:1 (1994), 9–13 | DOI

[10] Steinberg A. M., “Conditional probabilities in quantum theory, and the tunneling time controversy”, Phys. Rev. A, 52:1 (1995), 32–42, arXiv: quant-ph/9502003 | DOI | MR

[11] Chiao R. Y., “Tachyonlike excitations in inverted two-level media”, Phys. Rev. Lett., 77:7 (1996), 1254–1957 | DOI

[12] Olkhovsky V. S., Recami E., Raciti F., Zaichenko A. K., “More about tunnelling times, the dwell time and the “Hartman effect””, J. Phys. I France, 5:10 (1995), 1351–1365, arXiv: quant-ph/9508010 | DOI

[13] Jakiel J., Olkhovsky V. S., Recami E., “On superluminal motions in photon and particle tunnellings”, Phys. Lett. A, 248:2–4 (1998), 156–162, arXiv: quant-ph/9810053 | DOI

[14] Sassoli de Bianchi M., “A simple semiclassical derivation of Hartman's effect”, Eur. J. Phys., 21 (2000), L21–L23 | DOI

[15] Longhi S., Marano M., Laporta P., Belmonte M., “Superluminal optical pulse propagation at 1.5 μm in periodic fiber Bragg gratings”, Phys. Rev. E, 64:5 (2001), 055602 | DOI

[16] Olkhovsky V. S., Recami E., Salesi G., “Superluminal tunnelling through two successive barriers”, EPL – Europhys. Lett., 57:6 (2002), 879–884, arXiv: quant-ph/0002022 | DOI

[17] Winful H., “Delay time and the Hartman effect in quantum tunneling”, Phys. Rev. Lett., 91:26 (2003), 260401 | DOI

[18] Olkhovsky V. S., Recami E., Jakiel J., “Unified time analysis of photon and particle tunnelling”, Phys. Rep., 398:3 (2004), 133–178 | DOI

[19] Martinez J. C., Polatdemir E., “Origin of the Hartman effect”, Phys. Lett. A, 351:1–2 (2006), 31–36 | DOI

[20] Enders A., Nimtz G., “Evanescent-mode propagation and quantum tunneling”, Phys. Rev. E, 48:1 (1993), 632–634 | DOI | MR

[21] Nimtz G., “On superluminal tunneling”, Progress in Quantum Electronics, 27:6 (2003), 417–450 | DOI

[22] Nimtz G., “Superluminal signal velocity and causality”, Found. Phys., 34:12 (2004), 1889–1903 | DOI | MR

[23] Nimtz G., “Tunneling confronts special relativity”, Found. Phys., 41:7 (2011), 1193–1199 | DOI | MR | Zbl

[24] Hauge E. H., Støvneng J. A., “Tunneling times: a critical review”, Rev. Mod. Phys., 61:4 (1989), 917–936 | DOI

[25] Winful H. G., “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox”, Phys. Rep., 436:1–2 (2006), 1–69 | DOI

[26] Yamada N., “Unified derivation of tunneling times from decoherence functionals”, Phys. Rev. Lett., 93:17 (2004), 170401 | DOI

[27] Khalfin L. A., “The quantum theory of wave packet scattering, the causality principle, and superlight tunnelling”, Phys. Usp., 39:6 (1996), 639–642 | DOI | DOI

[28] Shvartsburg A. B., “Tunneling of electromagnetic waves: paradoxes and prospects”, Phys. Usp., 50:1 (2007), 37–51 | DOI | DOI

[29] Shvartsburg A. B., Erokhin N. S., “Resonant tunneling of ultrashort electromagnetic pulses in gradient metamaterials: paradoxes and prospects”, Phys. Usp., 54:11 (2011), 1171–1176 | DOI | DOI

[30] Chiao R. Y., Kwiat P. G., Steinberg A. M., “Quantum nonlocality in two-photon experiments at Berkeley”, Quantum Semiclass. Opt., 7:3, arXiv: quant-ph/9501016 | DOI | MR

[31] Eckle P., Pfeiffer A. N., Cirelli C., et al., “Attosecond ionization and tunneling delay time measurements in Helium”, Science, 322:5907 (2009), 1525–1529 | DOI

[32] Pfeiffer A. N., Cirelli C., Smolarski M., et al., “Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms”, Nat. Phys., 8 (2012), 76–80 | DOI

[33] Camus N., Yakaboylu E., Fechner L., et al., “Experimental evidence for quantum tunneling time”, Phys. Rev. Lett., 119:2 (2017), 023201 | DOI

[34] Landsman A. S., Weger M., Maurer J., et al., “Ultrafast resolution of tunneling delay time”, Optica, 1:5 (2014), 343–349 | DOI

[35] Sainadh U. S., Xu H., Wang X., et al., “Attosecond angular streaking and tunnelling time in atomic hydrogen”, Nature, 568 (2019), 75–77 | DOI

[36] Mitchell M. W., Chiao R. Y., “Causality and negative group delays in a simple bandpass amplifier”, Amer. J. Phys., 66:1 (1998), 14–19 | DOI | MR

[37] Borjemscaia N., Polyakov S. V., Lett P. D., Migdall A., “Single-photon propagation through dielectric bandgaps”, Optics Express, 18:3 (2010), 2279–2286 | DOI

[38] Muga J. G., Palao J. P., “Negative time delays in one dimensional absorptive collisions”, Annalen der Physik, 7:7–8 (1998), 671–678 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[39] Muga J. G., Egusquiza I. L., Damborenea J. A., Delgado F., “Bounds and enhancements for negative scattering time delays”, Phys. Rev. A, 66:4 (2002), 042115 | DOI

[40] Dogariu A., Kuzmich A., Wang L. H., “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity”, Phys. Rev. A, 63:5 (2001), 053806, arXiv: [physics.optics] arXiv:physics/0012060 | DOI

[41] Wang L. J., Dogariu A., Kuzmich A., “Superluminal light pulse propagation at a negative group velocity”, Coherence and Quantum Optics VIII, eds. N. P. Bigelow, J. H. Eberly, C. R. Stroud, I. A. Walmsley, Springer, Boston, MA, 2003, 619–620 | DOI

[42] Davidovich M. V., “Propagation of signals through a dissipative filter and the negative time delay”, Tech. Phys., 57:3 (2012), 328–335 | DOI | MR

[43] Landau L. D., Lifshits E. M., Electrodynamics of Continuous Media, Course of Theoretical Physics, 8, Pergamon, New York, 1984 | MR | MR

[44] Davidovich M. V., “Electromagnetic energy density and velocity in a medium with anomalous positive dispersion”, Tech. Phys. Lett., 32:22 (2006), 982–986 | DOI

[45] Akhiezer A. I., Akhiezer I. A., Elektromagnetizm i elektromagnitnye volny [Electromagnetism and Electromagnetic Waves], Vyssh. shk., Moscow, 1985, 504 pp. (In Russian)

[46] Davidovich M. V., “The conservation laws and the densities of electromagnetic field energy and momentum in dispersive media”, Izv. Saratov Univ. (N. S.), Ser. Physics, 12:1 (2012), 46–54 (In Russian) | MR

[47] Davidovich M. V., “On the electromagnetic energy density and energy transfer rate in a medium with dispersion due to conduction”, Tech. Phys., 55:5 (2010), 630–635 | DOI

[48] Rytov S. M., “Some theorems of the group velocity of electromagnetic waves”, JETP, 176:10 (1947), 930–936 (In Russian)

[49] Davidovich M. V., “Plasmons in multilayered plane-stratified structures”, Quantum Electronics, 47:6 (2017), 567–579 | DOI

[50] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Routledge, London, 1992 | DOI | MR | MR

[51] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Academic Press, California, 1980 | DOI | MR | MR | Zbl

[52] Davidovich M. V., “Scattering and transmission matrices of an inhomogeneous layer”, J. Commun. Technol. Electron., 55:1 (2010), 20–27 | DOI

[53] Davidovich M. V., “On low-reflection magnetodielectric coatings with exponential dependences of permittivity and permeability”, J. Commun. Technol. Electron., 55:4 (2010), 465–468 | DOI

[54] Davidovich M. V., Stefjuk J. V., “Nonlinear electromagnetic wave passing through the layer with quadratic and fractionally­polynomial permittivity dependences on amplitude”, Izvestiya VUZ. Applied Nonlinear Dynamics, 18:3 (2010), 160–177 (In Russian) | DOI | MR | Zbl

[55] Vainshtein L. A., “Propagation of pulses”, Sov. Phys. Usp., 19:2 (1976), 189–205 | DOI | DOI

[56] Davidovich M. V., “On the Hartman paradox, electromagnetic wave tunneling and supraluminal velocities (comment on the paper “Tunneling of electromagnetic waves: paradoxes and prospects” by A. B. Shvartsburg)”, Phys. Usp., 52:4 (2009), 415–418 | DOI | DOI

[57] Baz' A. I., Zel'dovich Ia. B., Perelomov A. M., Rasseianie, reaktsii i raspady v nereliativistskoi kvantovoi mekhanike [Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics], Nauka, Moscow, 1971, 530 pp. (In Russian)

[58] Gribov V. N., Kvantovaia elektrodinamika [Quantum Electrodynamics], Regular and Chaotic Dynamics, Moscow, Izhevsk, 2001, 288 pp. (In Russian)

[59] Grishakov K. S., Elesin V. F., “Transition times between the extremum points of the current–voltage characteristic of a resonant tunneling diode with hysteresis”, Semiconductors, 50:8 (2016), 1092–1096 | DOI