Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a0, author = {A. Yu. Samarin}, title = {Quantum evolution as a usual mechanical motion of~peculiar continua}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--21}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/} }
TY - JOUR AU - A. Yu. Samarin TI - Quantum evolution as a usual mechanical motion of~peculiar continua JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 7 EP - 21 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/ LA - en ID - VSGTU_2020_24_1_a0 ER -
%0 Journal Article %A A. Yu. Samarin %T Quantum evolution as a usual mechanical motion of~peculiar continua %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 7-21 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/ %G en %F VSGTU_2020_24_1_a0
A. Yu. Samarin. Quantum evolution as a usual mechanical motion of~peculiar continua. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 7-21. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/
[1] Einstein A., Podolsky B., Rosen N., “Can quantum mechanics description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI | Zbl
[2] Schrödinger E., “The continuous transition from micro- to macro mechanics”, Collected papers on wave mechanics, Chelsea Publishing Co., New York, 1982, 41–44 | DOI | MR | Zbl
[3] Bell J. S., “Against 'measurement'”, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Oxford Univ. Press, Oxford, 2004, 213–231 | DOI | MR
[4] Maudlin T., “What Bell did”, J. Phys. A: Math. Theor., 47:42 (2014), 424010 | DOI | MR | Zbl
[5] Samarin A. Yu., “Quantum particle motion in physical space”, Adv. Studies Theor. Phys., 8:1 (2014), 27–34, arXiv: [quant-ph] 1407.3559 | DOI
[6] Samarin A. Yu., “Nonlinear dynamics of open quantum systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214–224 | DOI | Zbl
[7] von Neumann J., Mathematische Grundlagen der Quantenmechanik, Grundlehren der mathematischen Wissenschaften, 38, Springer, Berlin, Heidelberg, New York, 1996, ix+262 pp. | DOI | MR
[8] Landau L. D., Lifshitz E. M., Mechanics, v. 1, Course of Theoretical Physics, Pergamon Press, Oxford, 1969, vii+165 pp. https://archive.org/details/Mechanics_541 | MR
[9] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367–387 | DOI | MR | Zbl
[10] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | MR | Zbl
[11] Kac M., Probability and related topics in physical sciences, Lectures in Applied Mathematics. Proceedings of the Summer Seminar (Boulder, Colo., 1957), 1, Interscience Publ., Lonodon, New York, 1959, xiii+266 pp. | MR