Quantum evolution as a usual mechanical motion of~peculiar continua
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum particles are considered as continuous media having peculiar properties. These properties are formulated so that all main quantum mechanics postulates can be strictly derived from them. A deterministic description of the process of position measurement is presented. The mechanism of occurrence of randomness in the measurement process is shown and the Born rule is derived. A realistic interpretation of the wave function as a component of a peculiar variable force acting on the apparatus is introduced, and the wave equation is derived from the continuity equation of the peculiar continuum. The deterministic view on the phenomena of the microcosm allows us to eliminate the limitations caused by the uncertainty principle and to describe dynamically those processes that cannot be considered using conventional quantum mechanics.
Keywords: deterministic quantum description, continuous medium, local realism principle, matter field, continuity equation, wave function realistic interpretation, Born rule, uncertainty principle.
@article{VSGTU_2020_24_1_a0,
     author = {A. Yu. Samarin},
     title = {Quantum evolution as a usual mechanical motion of~peculiar continua},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Samarin
TI  - Quantum evolution as a usual mechanical motion of~peculiar continua
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 7
EP  - 21
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/
LA  - en
ID  - VSGTU_2020_24_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Samarin
%T Quantum evolution as a usual mechanical motion of~peculiar continua
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 7-21
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/
%G en
%F VSGTU_2020_24_1_a0
A. Yu. Samarin. Quantum evolution as a usual mechanical motion of~peculiar continua. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 7-21. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a0/

[1] Einstein A., Podolsky B., Rosen N., “Can quantum mechanics description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI | Zbl

[2] Schrödinger E., “The continuous transition from micro- to macro mechanics”, Collected papers on wave mechanics, Chelsea Publishing Co., New York, 1982, 41–44 | DOI | MR | Zbl

[3] Bell J. S., “Against 'measurement'”, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Oxford Univ. Press, Oxford, 2004, 213–231 | DOI | MR

[4] Maudlin T., “What Bell did”, J. Phys. A: Math. Theor., 47:42 (2014), 424010 | DOI | MR | Zbl

[5] Samarin A. Yu., “Quantum particle motion in physical space”, Adv. Studies Theor. Phys., 8:1 (2014), 27–34, arXiv: [quant-ph] 1407.3559 | DOI

[6] Samarin A. Yu., “Nonlinear dynamics of open quantum systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214–224 | DOI | Zbl

[7] von Neumann J., Mathematische Grundlagen der Quantenmechanik, Grundlehren der mathematischen Wissenschaften, 38, Springer, Berlin, Heidelberg, New York, 1996, ix+262 pp. | DOI | MR

[8] Landau L. D., Lifshitz E. M., Mechanics, v. 1, Course of Theoretical Physics, Pergamon Press, Oxford, 1969, vii+165 pp. https://archive.org/details/Mechanics_541 | MR

[9] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367–387 | DOI | MR | Zbl

[10] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | MR | Zbl

[11] Kac M., Probability and related topics in physical sciences, Lectures in Applied Mathematics. Proceedings of the Summer Seminar (Boulder, Colo., 1957), 1, Interscience Publ., Lonodon, New York, 1959, xiii+266 pp. | MR